精英家教网 > 高中数学 > 题目详情
7.已知一点在直线上从时刻t=0(s)开始以速度v(t)=t2-4t+3(m/s)运动,求:
(1)在t=4s时的位置;
(2)在t=4s的运动路程.

分析 (1)在t=4s时的位置=${∫}_{0}^{4}({t}^{2}-4t+3)dt$;
(2)由t2-4t+3>0,解得t>3或0<t<1.在t=4s的运动路程S=${∫}_{0}^{1}({t}^{2}-4t+3)dt$-${∫}_{1}^{3}({t}^{2}-4t+3)dt$+${∫}_{3}^{4}({t}^{2}-4t+3)dt$,利用微积分基本定理即可得出.

解答 解:(1)在t=4s时的位置=${∫}_{0}^{4}({t}^{2}-4t+3)dt$=$(\frac{1}{3}{t}^{3}-2{t}^{2}+3t){|}_{0}^{4}$=$\frac{4}{3}$;
∴在t=4s时的位置为离开始点$\frac{4}{3}$m;
(2)由t2-4t+3=0,解得t=1,3.
在t=4s的运动路程S=${∫}_{0}^{1}({t}^{2}-4t+3)dt$-${∫}_{1}^{3}({t}^{2}-4t+3)dt$+${∫}_{3}^{4}({t}^{2}-4t+3)dt$
=$(\frac{1}{3}{t}^{3}-2{t}^{2}+3t){|}_{0}^{1}$-$(\frac{1}{3}{t}^{3}-2{t}^{2}+3t){|}_{1}^{3}$+$(\frac{1}{3}{t}^{3}-2{t}^{2}+3t){|}_{3}^{4}$
=$\frac{4}{3}$+$\frac{4}{3}$+$\frac{4}{3}$
=4m.
∴在t=4s的运动路程为4m.

点评 本题考查了微积分基本定理,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知圆M:x2+y2=10和圆N:x2+y2+2x+2y-14=0.求过两圆交点且面积最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.以下命题正确命题的个数为(  )
(1)化极坐标方程ρ2cosθ-ρ=0为直角坐标方程为x2+y2=0或y=1
(2)集合A={x||x+1|<1},B=$\{x|y=-\sqrt{2x-{x^2}}\}$,则A⊆B
(3)若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),则$\underset{lim}{h→0}$$\frac{f({x}_{0}+h)-f({x}_{0}-h)}{h}$的值为2f′(x0
(4)若曲线y=ex+a与直线y=x相切,则a的值为0
(5)将点P(-2,2)变换为P′(-6,1)的伸缩变换公式为$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知3x=5y,且$\frac{1}{x}$+$\frac{1}{y}$=3,则x+y=$\frac{1}{3}$(2+log35+log53).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,则cos(2α-$\frac{2π}{3}$)的值是-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设α,β是两个不同的平面,l是一条直线,以下命题不正确的是(  )
①若l⊥α,α⊥β,则l?β         ②若l∥α,α∥β,则l?β
③若l⊥α,α∥β,则l⊥β         ④若l∥α,α⊥β,则l⊥β
A.①③B.②③④C.①②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知命题p:($\frac{1}{3}$)${\;}^{a-{a}^{2}}$<9,q:|2a-1|<4,若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知偶函数g(x)=2x2+3x+1(x≤0),求x>0的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在数列{an}中,已知a1=$\frac{1}{2}$,an+1=$\frac{{na}_{n}}{(n+1)({na}_{n}+1)}$(n∈N*),则数列{an}的前2015项的和为$\frac{2015}{2016}$.

查看答案和解析>>

同步练习册答案