【题目】已知函数,在点M(1,f(1))处的切线方程为9x+3y-10=0,求
(1)实数a,b的值;
(2)函数f(x)的单调区间以及在区间[0,3]上的最值.
【答案】(1);(2)见解析
【解析】
求出曲线的斜率,切点坐标,求出函数的导数,利用导函数值域斜率的关系,即可求出的值
求出导函数的符号,判断函数的单调性以及求解区间上的函数的最值
(1)因为在点M(1,f(1))处的切线方程为9x+3y-10=0,
所以切线斜率是k=-3且9×1+3f(1)-10=0,
求得,即点
又函数,则f′(x)=x2-a
所以依题意得-
解得
(2)由(1)知
所以f′(x)=x2-4=(x+2)(x-2)
令f′(x)=0,解得x=2或x=-2
当f′(x)>0x>2或x<-2;当f′(x)<0-2<x<2
所以函数f(x)的单调递增区间是(-∞,-2),(2,+∞)
单调递减区间是(-2,2)
又x∈[0,3]
所以当x变化时,f(x)和f′(x)变化情况如下表:
X | 0 | (0,2) | 2 | (2,3) | 3 |
f′(x) | - | 0 | + | 0 | |
f(x) | 4 | ↘ | 极小值 | ↗ | 1 |
所以当x∈[0,3]时,f(x)max=f(0)=4,
-
科目:高中数学 来源: 题型:
【题目】已知数列{an}是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N* , 总有b1b2b3…bn﹣1bn=an+2成立.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记cn=(﹣1)n ,求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,⊙O是以AB为直径的圆,点C在圆上,在△ABC和△ACD中,∠ADC=90°,∠BAC=∠CAD,DC的延长线与AB的延长线交于点E.若EB=6,EC=6 ,则BC的长为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生寒假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表:
本数 | 0 | 1 | 2 | 3 | 4 | 5 |
男生 | 0 | 1 | 4 | 3 | 2 | 2 |
女生 | 0 | 0 | 1 | 3 | 3 | 1 |
(I)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率;
(II)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为 X,求随机变量 X的分布列和数学期望;
(III)试判断男学生阅读名著本数的方差 与女学生阅读名著本数的方差 的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的右焦点为,且椭圆上一点到其两焦点,的距离之和为.
(1)求椭圆的标准方程;
(2)设直线:()与椭圆交于不同两点,,且,若点满足,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中点,A1E⊥平面ABC.
(I)证明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求点B到平面ACC1A1的距离;
②求直线CB1与平面ACC1A1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系原点O为极点,以x轴非负半轴为极轴,以平面直角坐标系的长度单位为长度单位建立极坐标系.已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为ρsin2θ=4cosθ
(Ⅰ) 求曲线C的直角坐标方程;
(Ⅱ) 设直线l与曲线C相交于A,B两点,求|AB|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com