精英家教网 > 高中数学 > 题目详情
2.如图,过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点A作直线交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且$\overrightarrow{PQ}$=2$\overrightarrow{QA}$,则椭圆的离心率是$\frac{2\sqrt{5}}{5}$.

分析 利用等腰三角形的性质和向量相等运算即可得出点Q的坐标,再代入椭圆方程即可.

解答 解:∵△AOP是等腰三角形,A(-a,0)∴P(0,a).
设Q(x0,y0),∵$\overrightarrow{PQ}$=2$\overrightarrow{QA}$,
∴(x0,y0-a)=2(-a-x0,-y0).
∴$\left\{\begin{array}{l}{{x}_{0}=-2a-2{x}_{0}}\\{{y}_{0}-a=-2{y}_{0}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{0}=-\frac{2}{3}a}\\{{y}_{0}=\frac{1}{3}a}\end{array}\right.$.
代入椭圆方程得$\frac{\frac{4}{9}{a}^{2}}{{a}^{2}}$+$\frac{\frac{1}{9}{a}^{2}}{{b}^{2}}$=1,化为$\frac{{b}^{2}}{{a}^{2}}$=$\frac{1}{5}$.
∴e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{2\sqrt{5}}{5}$.
故答案:$\frac{2\sqrt{5}}{5}$

点评 熟练掌握等腰三角形的性质和向量相等运算、“代点法”等是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.复数i(2-i)在复平面内对应的点的坐标为(  )
A.(-2,1)B.(2,-1)C.(1,2)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.甲、乙、丙分别从A,B,C,D四道题中独立地选做两道题,其中甲必选B题.
(1)求甲选做D题,且乙、丙都不选做D题的概率;
(2)设随机变量X表示D题被甲、乙、丙选做的次数,求X的概率分布和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sin(2ωx-$\frac{π}{6}$)+2cos2ωx-1(ω>0)的最小正周期为π
(Ⅰ)求ω的值;
(Ⅱ)求f(x)在区间[0,$\frac{7π}{12}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在四棱锥P-ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.求证:
(1)平面PAD⊥平面ABCD;
(2)EF∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,且过点(1,$\frac{\sqrt{3}}{2}$),椭圆上顶点为A,过点A作圆(x-1)2+y2=r2(0<r<1)的两条切线分别与椭圆E相交于点B,C(不同于点A),设直线AB,AC的斜率分别为kAB,KAC
(1)求椭圆的标准方程;
(2)求kAB•kAC的值;
(3)试问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=x+lg(x-2)的零点所在区间为(  )
A.(2,2.0001)B.(2.0001,2.001)C.(2.001,2.01)D.(2.01,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设命题p:?x0∈(0,+∞),lnx0=-1.
命题q:若m>1,则方程x2+my2=1表示焦点在x轴上的椭圆.
那么,下列命题为真命题的是(  )
A.¬qB.(¬p)∨(¬q)C.p∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2cosx(sinx-cosx)+m(m∈R),将y=f(x)的图象向左平移$\frac{π}{4}$个单位后得到y=g(x)的图象,且y=g(x)在区间$[{0,\frac{π}{4}}]$内的最大值为$\sqrt{2}$.
(1)求实数m的值;
(2)求函数y=g(x)与直线y=1相邻交点间距离的最小值.

查看答案和解析>>

同步练习册答案