精英家教网 > 高中数学 > 题目详情
定义:对于函数,若存在非零常数,使函数对于定义域内的任意实数,都有,则称函数是广义周期函数,其中称为函数的广义周期,称为周距.
(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距的值;
(2)试求一个函数,使为常数,)为广义周期函数,并求出它的一个广义周期和周距
(3)设函数是周期的周期函数,当函数上的值域为时,求上的最大值和最小值.
(1)2;(2);(3)

试题分析:本题是一个新定义概念问题,解决问题的关键是按照新定义把问题转化为我们熟悉的问题,(1)就是找到使为常数,考虑到,因此取,则有,符合题设,即得;(2)在(1)中求解时,可以想到一次函数就是广义周期函数,因此取,再考虑到正弦函数的周期性,取,代入新定义式子计算可得;(3)首先,函数应该是广义周期函数,由新定义可求得一个广义周期是,周距,由于,可见在区间上取得最小值,在上取得最大值,而当时,由上面结论可得,最小值为,当时,,从而最大值为
试题解析:(1)
,(非零常数)
所以函数是广义周期函数,它的周距为2.  (4分)
(2)设,则


(非零常数) 所以是广义周期函数,且.      ( 9分)
(3)
所以是广义周期函数,且 .             (10分)
满足
得:

知道在区间上的最小值是上获得的,而,所以上的最小值为.       ( 13分)
得:

知道在区间上的最大值是上获得的,
,所以上的最大值为23.        (16分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(2013•湖北)设n是正整数,r为正有理数.
(1)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;
(2)证明:
(3)设x∈R,记[x]为不小于x的最小整数,例如.令的值.
(参考数据:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求函数在区间上的最小值;
(2)设,其中,判断方程在区间 上的解的个数(其中为无理数,约等于且有).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数对任意的恒有成立.
(1)当b=0时,记)上为增函数,求c的取值范围;
(2)证明:当时,成立;
(3)若对满足条件的任意实数b,c,不等式恒成立,求M的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,若互不相等,且,则的取值范围是             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”. 下列函数中存在唯一“可等域区间”的“可等域函数”为(     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,若,则        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的最小值为_____

查看答案和解析>>

同步练习册答案