精英家教网 > 高中数学 > 题目详情

【题目】若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=loga| |的图象大致为( )
A.
B.
C.
D.

【答案】B
【解析】解:∵当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1.

因此,必有0<a<1.

先画出函数y=loga|x|的图象:黑颜色的图象.

而函数y=loga| |=﹣loga|x|,其图象如红颜色的图象.

故答案选:B.

【考点精析】认真审题,首先需要了解指数函数的图像与性质(a0=1, 即x=0时,y=1,图象都经过(0,1)点;ax=a,即x=1时,y等于底数a;在0<a<1时:x<0时,ax>1,x>0时,0<ax<1;在a>1时:x<0时,0<ax<1,x>0时,ax>1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b,x,y∈R,证明:(a2+b2)(x2+y2)≥(ax+by)2 , 并利用上述结论求(m2+4n2)( + )的最小值(其中m,n∈R且m≠0,n≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈R,x﹣2>lgx,命题q:x∈R,x2>0,则(
A.命题p∨q是假命题
B.命题p∧q是真命题
C.命题p∧(¬q)是真命题
D.命题p∨(¬q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A城市的出租车计价方式为:若行程不超过3千米,则按“起步价”10元计价;若行程超过3千米,则之后2千米以内的行程按“里程价”计价,单价为1.5元/千米;若行程超过5千米,则之后的行程按“返程价”计价,单价为2.5元/千米.设某人的出行行程为x千米,现有两种乘车方案:①乘坐一辆出租车;②每5千米换乘一辆出租车.
(Ⅰ)分别写出两种乘车方案计价的函数关系式;
(Ⅱ)对不同的出行行程,①②两种方案中哪种方案的价格较低?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中与函数y=x相等的函数是( )
A.y=( 2
B.y=
C.y=2
D.y=log22x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程mx2﹣2x+1=0有实数解”.若“p∨q”为真,“¬q”为假,则实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F为抛物线C:y2=4x的焦点,点P是准线l上的动点,直线PF交抛物线C于A,B两点,若点P的纵坐标为m(m≠0),点D为准线l与x轴的交点. (Ⅰ)求直线PF的方程;
(Ⅱ)求△DAB的面积S范围;
(Ⅲ)设 ,求证λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 过点 ,离心率为 ,左、右焦点分别为F1 , F2 , 过F1的直线交椭圆于A,B两点. (Ⅰ)求椭圆C的方程;
(Ⅱ)当△F2AB的面积为 时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否做到“光盘”行动,得到如下列联表及附表: 经计算:

做不到“光盘”行动

做到“光盘”行动

45

10

30

15

P(X2≥x0

0.10

0.05

0.025

x0

2.706

3.841

5.024

参照附表,得到的正确结论是(
A.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别无关”
C.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别有关”
D.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别无关”

查看答案和解析>>

同步练习册答案