精英家教网 > 高中数学 > 题目详情
7.△ABC中,角A,B,C所对的边分别是a,b,c,已知b=3,A=30°,若解此三角形时有两解,则a的取值范围为$\frac{3}{2}$<a<3.

分析 利用正弦定理列出关系式,将a,b,sinA的值代入表示出sinB,根据B的度数确定出B的范围,要使三角形有两解确定出B的具体范围,利用正弦函数的值域求出x的范围即可.

解答 解:∵在△ABC中,b=3,A=30°,
∴由正弦定理得:sinB=$\frac{bsinA}{a}$=$\frac{\frac{3}{2}}{a}$
∵A=30°,
∴0<B<150°,
要使三角形有两解,得到30°<B<150°,且B≠90°,即$\frac{1}{2}$<sinB<1,
∴$\frac{1}{2}$<$\frac{\frac{3}{2}}{a}$<1,
解得:$\frac{3}{2}$<a<3,
故答案为:$\frac{3}{2}$<a<3.

点评 此题考查了正弦定理,以及正弦函数的性质,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.若f(x)=$\frac{{a}^{x}-{a}^{-x}}{{a}^{x}+{a}^{-x}}$(0<a<1).
(1)求f(x)的定义域、值域;
(2)判断并证明f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$.
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)判断函数f(x)的单调性,并用函数单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x+$\frac{1}{x}$=4,求x3+x-3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC中,若sin(A-B)cosB+cos(A-B)sinB≥1,则△ABC是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.有1,2,3,4,5,6,7,8,9九个数,其中含2,3,但他们不相邻的五位数有2520个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如图的2×2列联表.
喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计302050
则至少有(  )的把握认为喜爱打篮球与性别有关.附参考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1•}{n}_{2•}{n}_{•1}{n}_{•2}}$
P(X2>k00.100.050.0250.0100.0050.001
k02.7063.8413.0046.6157.78910.828
A.95%B.99%C.99.5%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-3)(x0+1)2,则该函数的单调递减区间为(  )
A.[-1,+∞)B.(-∞,3]C.(-∞,-1]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=loga(ax-1)(a>1)且x>1,求使f(2x)=f-1(x)的x的值.

查看答案和解析>>

同步练习册答案