精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;

(2)若 都是从区间上任取的一个数,求成立的概率.

【答案】(1)(2)

【解析】试题分析:

(1)基本事件总数为个.函数有零点的条件为. ,则函数有零点的概率为.

(2)由几何概型的计算公式可得事件“”的概率为.

试题解析:

解:(1) 都是从0,1,2,3,4五个数中任取的一个数,则基本事件总数为个.

函数有零点的条件为,即.因为事件“”包含

所以事件“”的概率为,即函数有零点的概率为.

(2) 都是从区间上任取的一个数, ,即,此为几何模型,如图可知,事件“”的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 “一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了人,按年龄分成5组(第一组:,第二组,第三组:,第四组:,第五组:),得到如图所示的频率分布直方图,已知第一组有6人

(1)求

(2)求抽取的人的年龄的中位数(结果保留整数);

(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1-5组,从这5个按年龄分的组合5个按职业分的组中每组各选派1人参加知识竞赛代表相应组的成绩,年龄组中1-5组的成绩分别为93,96,97,94,90,职业组中1-5组的成绩分别为93,98,94,95,90

i)分别求5个年龄组和5个职业组成绩的平均数和方差;

ii)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆右焦点是抛物线的焦点,在第一象限内的交点,且.

(1)求的方程;

(2)已知菱形的顶点在椭圆上,顶点在直线上,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,则下面结论正确的是 ( )

A. 上各点的横坐标缩短到原来的倍, 纵坐标不变,再把得到的曲线向左平移个单位长度, 得到曲线

B. 上各点的横坐标缩短到原来的倍 ,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

C. 上各点的横坐标伸长到原来的倍 ,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

D. 上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校高一数学考试后,对(分)以上的成绩进行统计,其頻率分布直方图如图所示,分数在分的学生人数为.

(1)求这所学校分数在分的学生人数;

(2)请根据频率发布直方图估计这所学校学生分数在分的学生的平均成绩;

(3)为进一步了解学生的学习情况,按分层抽样方法从分数在分和分的学生中抽出人,从抽出的学生中选出人分别做问卷和问卷,求分的学生做问卷 分的学生做问卷的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当为何值时, 最小? 此时的位置关系如何?

(2)当为何值时, 的夹角最小? 此时的位置关系如何?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】陕西省洛川地处北纬35°-36°,东经109°,昼夜温差,是国内外专家公认的世界最佳苹果优生区,是国家生态建设示范试点.近几年,果农为了提高经济效益,增加了广告和包装的投资费用,5年内果农投入的广告和包装费用(万元)与销售额(万元)之间有下面对应数据:

2

4

5

6

8

30

40

60

50

70

(1)假设之间线性相关,求回归直线方程;

(2)预测广告和包装费用为10(万元)时销售额是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,已知点,圆

I)在极坐标系中,以极点为原点,极轴为轴正半轴建立平面直角坐标系,取相同的长度单位,求圆的直角坐标方程;

II)求点到圆圆心的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,过点的直线相交于两点,点关于轴的对称点为

(Ⅰ)判断点是否在直线上,并给出证明;

(Ⅱ)设,求的内切圆的方程.

查看答案和解析>>

同步练习册答案