精英家教网 > 高中数学 > 题目详情
△ABC中,角A、B、C所对应的边分别为a、b、c,若
a-c
b-c
=
sinB
sinA+sinC

(Ⅰ)求角A;
(Ⅱ)若函数f(x)=cos2(x+A)-sin2(x-A)+sinx(x∈[0,
π
2
])
,求函数f(x)的取值范围.
分析:(Ⅰ)利用正弦定理化简已知等式的右边,再根据余弦定理表示出cosA,将化简得到的关系式代入求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;
(Ⅱ)将A的度数代入f(x)解析式中,前两项利用二倍角的余弦函数公式化简,整理后得到关于sinx的二次函数,根据x的范围,利用正弦函数的图象与性质得到sinx的范围,利用二次函数的性质即可得到函数f(x)的值域,即为f(x)的取值范围.
解答:解:(Ⅰ)由
a-c
b-c
=
sinB
sinA+sinC
,得
a-c
b-c
=
b
a+c

即a2=b2+c2-bc,即bc=b2+c2-a2
b2+c2-a2
2bc
=
1
2

又根据余弦定理得到cosA=
1
2

∵0<A<π,
∴A=
π
3
;…(6分)
(Ⅱ)f(x)=cos2(x+A)-sin2(x-A)+sinx
=cos2(x+
π
3
)-sin2(x-
π
3
)+sinx
=
1+cos(2x+
3
)
2
-
1-cos(2x+
3
)
2
+sinx
=sin2x+sinx-
1
2
=(sinx+
1
2
2-
3
4

∵x∈[0,
π
2
],
∴sinx∈[0,1],
则根据二次函数性质得到函数f(x)的取值范围[-
1
2
3
2
].…(13分)
点评:此题考查了正弦、余弦定理,二倍角的余弦函数公式,正弦函数的定义域与值域,以及二次函数的性质,熟练掌握定理及性质是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•丰台区一模)在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知函数f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函数f(x)的最小正周期及在区间[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面积S△ABC=3,求边长a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)在△ABC中,角A,B,C的对边分别为a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若A=
π4
,a=2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A、B、C所对的边长分别为a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大小;
(2)若△ABC面积为
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步练习册答案