精英家教网 > 高中数学 > 题目详情
14.已知点$M(0,\sqrt{3})$是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个顶点,椭圆C的离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程; 
(Ⅱ)已知点P(x0,y0)是定点,直线$l:y=\frac{1}{2}x+m(m∈R)$交椭圆C于不同的两点A、B,记直线PA、PB的斜率分别为k1、k2,求点P的坐标,使得k1+k2=0恒成立.

分析 (Ⅰ)由给出的椭圆的离心率、椭圆过定点M及隐含条件a2=b2+c2列方程组可求a2,b2,则椭圆方程可求;
(2)设出A,B两点的坐标,把直线和椭圆联立后可求A,B两点的横坐标的和与积,把直线PA、PB的斜率k1、k2分别用A,B两点的坐标表示,把纵坐标转化为横坐标后,则k1+k2仅含A,B两点的横坐标的和与积,化简整理即可得到结论.

解答 解:(Ⅰ)由题意,b=$\sqrt{3}$,$\frac{c}{a}$=$\frac{1}{2}$,a2=b2+c2
∴c=1,a=2,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$; 
(Ⅱ)设A(x1,y1),B(x2,y2),直线$l:y=\frac{1}{2}x+m(m∈R)$代入椭圆C,
整理得:x2+mx+m2-3=0.
设A(x1,y1),B(x2,y2),则x1+x2=-m,x1x2=m2-3,
k1+k2=$\frac{{y}_{1}-{y}_{0}}{{x}_{1}-{x}_{0}}$+$\frac{{y}_{2}-{y}_{0}}{{x}_{2}-{x}_{0}}$=0.
∴y1x2+y2x1+2x0y0-y0(x1+x2)-x0(y1+y2)=0,
代入整理可得m(y0-$\frac{3}{2}$x0)+2x0y0-3=0
∴y0-$\frac{3}{2}$x0=0且2x0y0-3=0
∴x0=1,y0=$\frac{3}{2}$或x0=-1,y0=-$\frac{3}{2}$,
∴P(1,$\frac{3}{2}$)或P(-1,-$\frac{3}{2}$).

点评 本题考查了椭圆标准方程的求法,考查了直线和圆锥曲线的位置关系,考查了数形结合的解题思想,解答此类问题的关键是,常常采用设而不求的方法,即设出直线与圆锥曲线交点的坐标,解答时不求坐标,而是运用根与系数关系求出两个点的横坐标的和与积,然后结合已知条件整体代入求解问题,此题是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数y=4x-2x+1,x∈[-3,2]的最大值为13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下面给出的四个命题中:
①若m=-2,则直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直;
②命题“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”;
③将函数y=sin2x的图象向右平移$\frac{π}{3}$个单位,得到函数$y=sin({2x-\frac{π}{6}})$的图象.
其中是真命题的有①②(将你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中的假命题是(  )
A.?x∈R,x3<0
B.在斜二测画法中,直观图的面积是原图形面积的4$\sqrt{2}$
C.“a>0”是“|a|>0”充分不必要的条件
D.关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且x2-x1=15,则$a=\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列命题中,
①方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示曲线C可能为圆;
②$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要条件;
③一个命题的逆命题为真,它的否命题也一定为真;
④“9<k<15”是“方程$\frac{{x}^{2}}{15-k}$+$\frac{{y}^{2}}{k-9}$=1表示椭圆”的充要条件.
⑤设P是以F1、F2为焦点的双曲线一点,且$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,若△PF1F2的面积为9,则双曲线的虚轴长为6;其中真命题的序号是①③⑤(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.写出命题“存在一个常数M,对任意的x,都有|f(x)|≤M”的否定是存在一个常数M,存在实数x,使得|f(x)|>M.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.有下列叙述:
①y=x2-2|x|-3的递增区间为[0,+∞);
②函数f(x)的定义域为R,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=$\frac{3}{4}$;
③函数y=f(x)是R上的偶函数,对?x∈R,都有f(x+6)=f(x)+f(3)成立,当x1、x2∈[0,3]且x1≠x2时,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则函数x=-3是函数y=f(x)图象的一条对称轴;
④已知函数f(x)=x|x|,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)成立,则实数t的取值范围是[$\sqrt{2}$,+∞).
其中所有正确叙述的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC中的三个顶点坐标分别为A(4,6),B(-2,0),C(0,-2),若圆x2+y2=r2上的所有点都在△ABC内(包括边界),则该圆的面积的最大值是(  )
A.B.$\frac{4}{5}$πC.$\sqrt{2}$πD.$\frac{2\sqrt{2}}{5}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.有一面足够长的墙,现用一36米长的篱笆围成如图所示的四个面积相等的猪圈,那么猪圈的最大总面积为$\frac{324}{5}$.

查看答案和解析>>

同步练习册答案