【题目】已知函数.
(1)求函数的极值;
(2)若不等式恒成立,求的最小值(其中e为自然对数的底数).
【答案】(1)当时,无极值;当时,极大值为,无极小值
(2)-1
【解析】
(1)求出导函数,确定函数单调性,得极值,需分类讨论.
(2)恒成立,设,求出的最大值,由得出满足的不等关系,然后得,求得的最小值即得结论.
(1)解,
当时,恒成立,函数在上单调递增,无极值.
当时,由,得,函数在上单调递增,由,得,
函数在上单调递减,极大值为,无极小值.
综上所述,当时,无极值;
当时,极大值为,无极小值.
(2)由可得,
设,所以,,
当时,,在上是增函数,所以不可能恒成立,
当时,由,得,
当时,,单调递增,当时,,单调递减,
所以当时,取最大值,,
所以,即,所以,
令,,
当时,,单调递增,
当时,,单调递减,
所以当时,取最小值,即,所以的最小值为-1.
科目:高中数学 来源: 题型:
【题目】劳动教育是中国特色社会主义教育制度的重要内容,某高中计划组织学生参与各项职业体验,让学生在劳动课程中掌握一定劳动技能,理解劳动创造价值,培养劳动自立意识和主动服务他人、服务社会的情怀.学校计划下周在高一年级开设“缝纫体验课”,聘请“织补匠人”李阿姨给同学们传授织补技艺。高一年级有6个班,李阿姨每周一到周五只有下午第2节课的时间可以给同学们上课,所以必须安排有两个班合班上课,高一年级6个班“缝纫体验课”的不同上课顺序有( )
A.600种B.3600种C.1200种D.1800种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平行四边形ABCD中,,,,点E是CD边的中点,将沿AE折起,使点D到达点P的位置,且.
(1)求证;平面平面ABCE;
(2)求点E到平面PAB的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】手机等数码产品中的存储器核心部件是闪存芯片,闪存芯片有两个独立的性能指标:数据传输速度和使用寿命,数据传输速度的单位是,使用寿命指的是完全擦写的次数(单位:万次).某闪存芯片制造厂为了解产品情况,从一批闪存芯片中随机抽取了100件作为样本进行性能测试,测试数据经过整理得到如下的频率分布直方图(每个分组区间均为左闭右开),其中,,成等差数列且.
(1)估计样本中闪存芯片的数据传输速度的中位数.
(2)估计样本中闪存芯片的使用寿命的平均数.(每组数据以中间值为代表)
(3)规定数据传输速度不低于为优,使用寿命不低于10万次为优,且两项指标均为优的闪存芯片为级产品,仅有一项为优的为级产品,没有优的为级产品.现已知样本中有45件级产品,用样本中不同级别产品的频率代替每件产品为相应级别的概率,从这一批产品中任意抽取4件,求其中至少有2件级产品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:已知四棱锥P—ABCD的底面ABCD是平行四边形,PA⊥面ABCD,M是AD的中点,N是PC的中点.
(1)求证:MN∥面PAB;
(2)若平面PMC⊥面PAD,求证:CM⊥AD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.
(1)求曲线的直角坐标方程;
(2)设曲线与直线交于点,点的坐标为(3,1),求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1所示,在矩形中,,,为中点,将沿折起,使点到点处,且平面平面,如图2所示.
(1)求证::
(2)在棱上取点,使平面平面,求平面与所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线在平面直角坐标系下的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.
(1)求曲线的普通方程及极坐标方程;
(2)直线的极坐标方程是,射线: 与曲线交于点与直线交于点,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com