精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数的极值;

2)若不等式恒成立,求的最小值(其中e为自然对数的底数).

【答案】1)当时,无极值;当时,极大值为,无极小值

2-1

【解析】

1)求出导函数,确定函数单调性,得极值,需分类讨论.

2恒成立,设,求出的最大值,由得出满足的不等关系,然后得,求得的最小值即得结论.

1)解

时,恒成立,函数上单调递增,无极值.

时,由,得,函数上单调递增,由,得

函数上单调递减,极大值为,无极小值.

综上所述,当时,无极值;

时,极大值为,无极小值.

2)由可得

,所以

时,上是增函数,所以不可能恒成立,

时,由,得

时,单调递增,当时,单调递减,

所以当时,取最大值,

所以,即,所以

时,单调递增,

时,单调递减,

所以当时,取最小值,即,所以的最小值为-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中,角所对的边分别是,且.

1)求角

2所在平面内一点,且满足,求的最小值,并求取得最小值时的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】劳动教育是中国特色社会主义教育制度的重要内容,某高中计划组织学生参与各项职业体验,让学生在劳动课程中掌握一定劳动技能,理解劳动创造价值,培养劳动自立意识和主动服务他人、服务社会的情怀.学校计划下周在高一年级开设“缝纫体验课”,聘请“织补匠人”李阿姨给同学们传授织补技艺。高一年级有6个班,李阿姨每周一到周五只有下午第2节课的时间可以给同学们上课,所以必须安排有两个班合班上课,高一年级6个班“缝纫体验课”的不同上课顺序有( )

A.600B.3600C.1200D.1800

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平行四边形ABCD中,,点ECD边的中点,将沿AE折起,使点D到达点P的位置,且.

1)求证;平面平面ABCE

2)求点E到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机等数码产品中的存储器核心部件是闪存芯片,闪存芯片有两个独立的性能指标:数据传输速度和使用寿命,数据传输速度的单位是,使用寿命指的是完全擦写的次数(单位:万次).某闪存芯片制造厂为了解产品情况,从一批闪存芯片中随机抽取了100件作为样本进行性能测试,测试数据经过整理得到如下的频率分布直方图(每个分组区间均为左闭右开),其中成等差数列且.

1)估计样本中闪存芯片的数据传输速度的中位数.

2)估计样本中闪存芯片的使用寿命的平均数.(每组数据以中间值为代表)

3)规定数据传输速度不低于为优,使用寿命不低于10万次为优,且两项指标均为优的闪存芯片为级产品,仅有一项为优的为级产品,没有优的为级产品.现已知样本中有45级产品,用样本中不同级别产品的频率代替每件产品为相应级别的概率,从这一批产品中任意抽取4件,求其中至少有2级产品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:已知四棱锥PABCD的底面ABCD是平行四边形,PA面ABCD,M是AD的中点,N是PC的中点.

(1)求证:MN面PAB;

(2)若平面PMC面PAD,求证:CMAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.

1)求曲线的直角坐标方程;

2)设曲线与直线交于点,点的坐标为(31),求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在矩形中,中点,将沿折起,使点到点处,且平面平面,如图2所示.

1)求证:

2)在棱上取点,使平面平面,求平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线在平面直角坐标系下的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求曲线的普通方程及极坐标方程;

(2)直线的极坐标方程是,射线 与曲线交于点与直线交于点,求线段的长.

查看答案和解析>>

同步练习册答案