精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,圆的直角坐标方程为.以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求圆的极坐标方程和直线的直角坐标方程;

(2)在圆上找一点,使它到直线的距离最小,并求点的极坐标.

【答案】(1) ;(2).

【解析】试题分析: ,代入求出方程;

先求出点坐标,然后将其转化为极坐标即可得到答案

解析:(1)

因为

所以曲线的极坐标方程可得

直线的普通方程为.

(2)因为曲线 是以为圆心, 为半径的圆,

设点,且点到直线 的距离最短,

所以曲线在点处的切线与直线 平行.

即直线的斜率的乘积等于,即.

因为

解得.

所以点的坐标为.

由于点到直线的距离最小,

所以点的坐标为

极径为,极角 .

所以点的极坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:

pk2k

0.050

0.010

0.001

k

3.841

6.635

10.828

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

,并参照附表,得到的正确结论是(  )

A. 在犯错误的概率不超过的前提下,认为“爱好游泳运动与性别有关”

B. 在犯错误的概率不超过的前提下,认为“爱好游泳运动与性别无关”

C. 的把握认为“爱好游泳运动与性别有关”

D. 的把握认为“爱好游泳运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)及其导数f′(x),若存在x0,使得f(x0)f′(x0),则称x0f(x)的一个“巧值点”,则下列函数中有“巧值点”的是________

f(x)x2f(x)exf(x)lnxf(x)tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

1)求图中x的值;

2)求这组数据的平均数和中位数;

3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,圆.

(1)当直线与圆相切时,求直线的一般方程;

(2)若直线与圆相交,且弦长为,求直线的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定下列四个命题,其中真命题是(

A.垂直于同一直线的两条直线相互平行

B.若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行

C.垂直于同一平面的两个平面相互平行

D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1ABCD为菱形,∠ABC60°,△PAB是边长为2的等边三角形,点MAB的中点,将△PAB沿AB边折起,使平面PAB⊥平面ABCD,连接PCPD,如图2

1)证明:ABPC

2)求PD与平面ABCD所成角的正弦值

3)在线段PD上是否存在点N,使得PB∥平面MC?若存在,请找出N点的位置;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,判断函数的奇偶性,并加以证明;

(2)若函数上是增函数,求实数的取值范围;

(3)若存在实数,使得关于的方程有三个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某钢管生产车间生产一批钢管,质检员从中抽出若干根对其直径(单位: )进行测量,得出这批钢管的直径 服从正态分布.

(1)当质检员随机抽检时,测得一根钢管的直径为,他立即要求停止生产,检查设备,请你根据所学知识,判断该质检员的决定是否有道理,并说明判断的依据;

(2)如果钢管的直径满足为合格品(合格品的概率精确到0.01),现要从60根该种钢管中任意挑选3根,求次品数的分布列和数学期望.

(参考数据:若,则 .

查看答案和解析>>

同步练习册答案