【题目】将直角三角形沿斜边上的高折成的二面角,已知直角边,那么下面说法正确的是( )
A. 平面平面 B. 四面体的体积是
C. 二面角的正切值是 D. 与平面所成角的正弦值是
【答案】C
【解析】
先由图形的位置关系得到是二面角的平面角,,故A不正确;B由于故得到B错误;易知为二面角的平面角,,由题意可知∠BDC为B﹣AD﹣C的平面角,即∠BDC=120°,作DF⊥BC于F,连结AF,sin∠BCO=.
沿折后如图,
,易知是二面角的平面角,
,由余弦定理得
,可得,过作于,连接,则,由面积相等得,可得.
根据,易知是二面角的平面角, 故A 平面与平面不垂直,错;
B由于,错;
C易知为二面角的平面角,,对;
D故如图,由题意可知∠BDC为B﹣AD﹣C的平面角,即∠BDC=120°,作DF⊥BC于F,连结AF,AF=,BD=4,DC=8,AD=4,过O作BO垂直BO⊥CO于O,则∠BCO就是BC与平面ACD所成角,BO=2,OD=2,BC=,sin∠BCO=.
选
科目:高中数学 来源: 题型:
【题目】中国古代数学著作《算法统综》中有这样的一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问此人第2天走的路程为
A. 24里 B. 48里 C. 72里 D. 96里
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2mx+2lnx,m∈R.
(1)探究函数f(x)的单调性;
(2)若关于x的不等式f(x)≤2+3x2在(0,+∞)上恒成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.
(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)
(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为和)进行技术分析.求事件“”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列的公差不为0,是其前项和,给出下列命题:
①若,且,则和都是中的最大项;
②给定,对一切,都有;
③若,则中一定有最小项;
④存在,使得和同号.
其中正确命题的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地草场出现火灾,火势正以每分钟的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火,所消耗的灭火材料、劳务津贴等费用为每人每分钟元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为30元.
(1)设派名消防队员前去救火,用分钟将火扑灭,试建立与的函数关系式;
(2)问应该派多少消防队员前去救火,才能使总损失最少?(注:总损失费=灭火劳务津贴+车辆、器械装备费+森林损失费)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知底角为的等腰梯形,底边长为7,腰长为,当一条垂直于底边垂足为的直线由从左至右向移动(与梯形有公共点)时,直线把梯形分成两部分,令,记左边部分的面积为.
(1)试求1,3时的值;
(2)写出关于的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com