精英家教网 > 高中数学 > 题目详情
已知F1、F2是椭圆的左、右焦点,P为椭圆上一个点,且|PF1|:|PF2|=1:2,则tan∠F1PF2=    ,PF2的斜率为   
【答案】分析:利用椭圆的定义,结合三角函数的定义可求∠F1PF2的正切值,求出tan∠PF2F1==,可得PF2的斜率.
解答:解:由题意,|PF1|+|PF2|=6,|F1F2|=4,
∵|PF1|:|PF2|=1:2,∴|PF1|2,|PF2|=4,
∴△PF1F2为等腰三角形,底边上的高为=
∴tan∠F1PF2=
由等面积可得,P到x轴的距离为
=
∴tan∠PF2F1==
∴PF2的斜率为
故答案为:
点评:本题考查椭圆的定义,考查三角函数的定义,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若在椭圆上存在一点P,使∠F1PF2=120°,则椭圆离心率的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使得∠F1PF2=120°,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆的两个焦点.△F1AB为等边三角形,A,B是椭圆上两点且AB过F2,则椭圆离心率是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,椭圆上存在一点P,使得SF1PF2=
3
b2
,则该椭圆的离心率的取值范围是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1
的两个焦点,点P是椭圆上一个动点,那么|
PF1
+
PF2
|
的最小值是(  )

查看答案和解析>>

同步练习册答案