精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f'(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)

(1)b关于a的函数关系式,并写出定义域;

(2)证明:b2>3a;

(3)f(x),f'(x)这两个函数的所有极值之和不小于-,a的取值范围.

【答案】(1)b=,定义域为(3,+∞);(2)见解析;(3)a的取值范围为(3,6].

【解析】试题分析:(1)先根据极值定义得x=-导函数f'(x)的极值点,再根据f=0得b关于a的函数关系式,最后根据有极值条件得b-0,解得定义域;(2)因为.所以根据导数可得其单调性,根据单调性可证不等式(3)根据韦达定理化简f(x),f'(x)这两个函数的所有极值之和+2,消去b得-a2+,再利用导数研究其单调性,根据单调性解不等式,即得a的取值范围.

试题解析:(1)解 由f(x)=x3+ax2+bx+1,得f'(x)=3x2+2ax+b=3+b-.

x=-时,f'(x)有极小值b-.

因为f'(x)的极值点是f(x)的零点,

所以f=-+1=0,又a>0,故b=.

因为f(x)有极值,故f'(x)=0有实根,从而b-(27-a3)≤0,即a≥3.

a=3时,f'(x)>0(x-1),故f(x)在R上是增函数,f(x)没有极值;

a>3时,f'(x)=0有两个相异的实根x1=,

x2=.

列表如下:

x

(-∞,x1)

x1

(x1,x2)

x2

(x2,+∞)

f'(x)

+

0

-

0

+

f(x)

极大值

极小值

f(x)的极值点是x1,x2.

从而a>3.

因此b=,定义域为(3,+∞).

(2)证明 由(1)知,.

g(t)=,则g'(t)=.

t时,g'(t)>0,从而g(t)在上单调递增.

因为a>3,所以a>3,故g(a)>g(3)=,即.

因此b2>3a.

(3)解 由(1)知,f(x)的极值点是x1,x2,且x1+x2=-a,.

从而f(x1)+f(x2)=+a+bx1+1++a+bx2+1=(3+2ax1+b)+(3+2ax2+b)+a()+b(x1+x2)+2=+2=0.

f(x),f'(x)所有极值之和为h(a),因为f'(x)的极值为b-=-a2+,

所以h(a)=-a2+,a>3.

因为h'(a)=-a-<0,于是h(a)在(3,+∞)上单调递减.

因为h(6)=-,于是h(a)≥h(6),故a≤6.

因此a的取值范围为(3,6].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为的菱形, .

(1)求证:平面平面

(2)若,求锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:

售出水量(单位:箱)

7

6

6

5

6

收入(单位:元)

165

142

148

125

150

学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.

(1)若成线性相关,则某天售出9箱水时,预计收入为多少元?

(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望;

附:回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左、右顶点,点满足

)求椭圆的方程;

)设直线经过点且与交于不同的两点,试问:在轴上是否存在点,使得直线 与直线的斜率的和为定值?若存在,请求出点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.其中

(1)当时,求函数的单调区间;

(2)若对于任意,都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数, ),以原点为极点, 轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的直角坐标方程;

(2)当有两个公共点时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 满足约束条件,若取得最大值的最优解不唯一,则实数的值为__________

【答案】

【解析】由题可知若取得最大值的最优解不唯一则必平行于可行域的某一边界,如图:要Z最大则直线与y轴的截距最大即可,当a<0时,则平行AC直线即可故a=-2,当a>0时,则直线平行AB即可,故a=1

点睛:线性规划为常考题型,解决此题务必要理解最优解个数为无数个时的条件是什么,然后根据几何关系求解即可

型】填空
束】
16

【题目】《数书九章》三斜求积术:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约一,为实,一为从隅,开平方得积”.秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.以 分别表示三角形的面积,大斜,中斜,小斜; 分别为对应的大斜,中斜,小斜上的高;则 .若在 ,根据上述公式,可以推出该三角形外接圆的半径为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一批养殖专业户投资石金钱龟养殖业,行业协会为了了解市场行情,对石金钱龟幼苖销售价格进行调查。2017年12月随机抽取500户销售石金钱龟幼苖的平均价格,得到如下不完整的频率分布统计表:

(Ⅰ)完成统计表。

(Ⅱ)为了向石金钱龟养殖户提供更好的幼苖销售参考,协会决定2018年1月份从第1,3,5组中用分层抽样方法取出7户出售幼龟价格跟踪调查,求第1,3,5组1月份接受调查的户数。

(Ⅲ)在(Ⅱ)的前提下,协会决定从选出的7个养殖户中随机抽取3户总结销售经验.为了鼓励养殖户支持调查工作,协会决定:发给第1组被抽到的每户幸运奖奖金210元,第3组被抽到的每户幸运奖奖金70元,第5组被抽到的每户幸运奖奖金140元.记发出的幸运奖总奖金额为元,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)设函数,试讨论函数零点的个数;

(2)若,求证:

查看答案和解析>>

同步练习册答案