精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是矩形,平面平面的中点,且.

I)求证:平面

II)求三棱锥的体积.

【答案】I)详见解析(II

【解析】

试题分析:I)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与论证,往往需要利用平几知识,如本题利用三角形中位线得:连接于点,则II)求三棱锥的体积,关键在求高,而高一般通过线面垂直得到,本题可以面面垂直性质定理可得线面垂直:利用等腰三角形性质可得中点),再利用面面垂直性质定理可得平面.在三角形中求出PH值,及三角形PBD面积,代入体积公式得结果

试题解析:解:(I)连接,交于点,连接,则的中点.

的中点,的中位线,

平面平面

平面.

II)取中点,连接

平面平面,且平面平面

平面.

是边长为2的等边三角形,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知:以点()为圆心的圆与轴交

于点O, A,与y轴交于点O, B,其中O为原点.

(1)求证:△OAB的面积为定值;

(2)设直线与圆C交于点M, N,若OM = ON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.(Ⅰ)求椭圆C的方程;(Ⅱ)过点的动直线l交椭圆CA、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最大值和最小值;

(2)若在区间上,函数的图像恒在直线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1,a),圆x2y2=4.

(1)若过点A的圆的切线只有一条,求a的值及切线方程;

(2)若过点A且在两坐标轴上截距相等的直线被圆截得的弦长为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=9A(-5,0)直线l:x-2y=0.

(1)求与圆C相切且与直线l垂直的直线方程;

(2)在直线OA上(O为坐标原点)存在定点B(不同于点A)满足:对于圆C上任一点P都有一常数,试求所有满足条件的点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如下表(单位:小时).

6

7

6

7

8

5

6

7

8

(1)试估计班学生人数;

(2)从班和班抽出来的学生中各选一名,记班选出的学生为甲,班选出的学生为乙,求甲的锻炼时间大于乙的锻炼时间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(1)班有男同学45名,女同学15名,老师按照分层抽样的方法抽取4人组建了一个课外兴趣小组.

(I)求课外兴趣小组中男、女同学的人数;

(II)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是从小组里选出一名同学做实验,该同学做完后,再从小组内剩下的同学中选出一名同学做实验,求选出的两名同学中恰有一名女同学的概率;

(III)在(II)的条件下,第一次做实验的同学A得到的实验数据为38,40,41,42,44,第二次做实验的同学B得到的实验数据为39,40,40,42,44,请问哪位同学的实验更稳定?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).

(1) 求向量bc的模的最大值;

(2) 若α=,且a⊥(bc),求cos β的值.

查看答案和解析>>

同步练习册答案