精英家教网 > 高中数学 > 题目详情
已知△ABC的顶点A(-1,5),B(-2,-1),C(4,7)
(1)求BC边上的中线AD (D为BC的中点)的方程,
(2)求线段AD的垂直平分线方程.
(1)设BC边上的中点为D,由中点坐标公式可知:D的坐标(
-2+4
2
-1+7
2
),即(1,3);
中线AD的斜率为:
5-3
-1-1
=-1,由点斜式方程可知y-3=-1(x-1),
整理可得 AD的方程,x+y-4=0.
(2)A(-1,5),D(1,3);
AD的中点为(0,4),由(1)可知,AD的斜率为:-1,
所以AD的中垂线方程为:y-4=x,
所以线段AD的垂直平分线方程:x-y+4=0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xoy中,已知△ABC的顶点A(-1,0)和C(1,0),顶点B在椭圆
x2
4
+
y2
3
=1
上,则
sinA+sinC
sinB
的值是(  )
A、
3
2
B、
3
C、4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(2,8),B(-4,0),C(6,0),
(1)求直线AB的斜率; 
(2)求BC边上的中线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A,B的坐标分别为(-4,0),(4,0),C 为动点,且满足|AC|+|BC|=
54
|AB|
,求点C的轨迹方程,并说明它是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(1,3),AB边上的中线CM所在直线方程为2x-3y+2=0,AC边上的高BH所在直线方程为2x+3y-9=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(0,-4),B(0,4),且4(sinB-sinA)=3sinC,则顶点C的轨迹方程是
y2
9
-
x2
7
=1
(y>3)
y2
9
-
x2
7
=1
(y>3)

查看答案和解析>>

同步练习册答案