精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若任意x∈R使不等式 成立,求实数a的取值范围.

【答案】
(1)解:由f(x)≤x+2,

解之得0≤x≤2,

∴f(x)≤x+2的解集为{x|0≤x≤2}


(2)解:由题可得,f(x)min (a2+ +9),

而f(x)=

∵f(x)min=2,


【解析】(1)通过讨论x的范围,得到各个区间上的x的范围,取并集即可;(2)求出f(x)的最小值,得到关于a的不等式,解出即可.
【考点精析】关于本题考查的绝对值不等式的解法,需要了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体ABCD-A1B1C1D1中,如图.

(1)求证:平面AB1D1∥平面C1BD;
(2)试找出体对角线A1C与平面AB1D1和平面C1BD的交点E,F,并证明:A1E=EF=FC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

(1)求频率分布图中 的值,并估计该企业的职工对该部门评分不低于80的概率;
(2)从评分在 的受访职工中,随机抽取2人,求此2人评分都在 的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为( )
A.60
B.80
C.120
D.180

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42. 5%,中年人占47. 5%,老年人占10%. 登山组的职工占参加活动总人数的 ,且该组中,青年人占50%,中年人占40%,老年人占10%. 为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:
(1)游泳组中,青年人、中年人、老年人分别所占的比例;
(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为F(1,0),且点 在椭圆C上,O为坐标原点. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过定点T(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x3+3ax2+3bx+8在x=1及x=2处取得极值.
(1)求a、b的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C在直角坐标系xOy下的参数方程为 (θ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程; (Ⅱ)直线l的极坐标方程是ρcos(θ﹣ )=3 ,射线OT:θ= (ρ>0)与曲线C交于A点,与直线l交于B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是奇函数且当 时是减函数,若 ,则函数 的零点共有( )
A.4个
B.5个
C.6个
D.7个

查看答案和解析>>

同步练习册答案