精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=3,an+1=an+lg(1+
1
n
)(n∈N*),则an=(  )
A、lgn
B、3+lg(
2
1
+
3
2
+…+
n
n+1
C、3+lgn
D、3+3lng
考点:数列递推式
专题:等差数列与等比数列
分析:首先根据已知条件,利用递推关系整理出多个关系式,观察规律,整理出通项公式.
解答: 解:已知:an+1=an+lg(1+
1
n
)①
an=an-1+lg(1+
1
n-1
)
 ②

a2=a1+lg(1+
1
1
)
(n)
①+②+…+(n)得:
an+1=a1+lg(2•
3
2
4
3
•…
n+1
n
)

因为:a1=3
所以:an=3+lgn
故选:C
点评:本题考查的知识点:用数列的递推关系式求通项公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1}.
(Ⅰ)若m=5,求(∁RA)∩B;
(Ⅱ)若B≠∅且A∪B=A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设锐角△ABC的内角A、B、C的对边分别为a、b、c,且2asinB=
3
b
(1)求角A的大小;
(2)若b=3,c=2,求边a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等比数列,若a1•a5=9,则a3=(  )
A、±3
B、-3
C、3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数为偶函数且在(0,+∞)为增函数的是(  )
A、y=-|x|
B、y=x3
C、y=ex
D、y=ln
x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
25
+
y2
9
=1的焦距是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
定义域为M,集合N={x|x2-2x=0},则M∩N=(  )
A、{0,2}B、{0}
C、{2}D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于x>0有意义,且满足f(2)=1,f(xy)=f(x)+f(y),求f(1)与f(8)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=a>0,前n项和为Sn,Sn=
a
1+a
(1+an).
(1)求证:{an}是等比数列;
(2)记bn=an1n|an|(n∈N*),当a=
15
5
时是否存在正整数n,都有bn≤bm?如果存在,求出m的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案