精英家教网 > 高中数学 > 题目详情

【题目】某种零件的质量指标值为整数,指标值为8时称为合格品,指标值为7或者9时称为准合格品,指标值为610时称为废品,某单位拥有一台制造该零件的机器,为了了解机器性能,随机抽取了该机器制造的100个零件,不同的质量指标值对应的零件个数如下表所示;

质量指标值

6

7

8

9

10

零件个数

6

18

60

12

4

使用该机器制造的一个零件成本为5元,合格品可以以每个元的价格出售给批发商,准合格品与废品无法岀售.

1)估计该机器制造零件的质量指标值的平均数;

2)若该单位接到一张订单,需要该零件2100个,为使此次交易获利达到1400元,估计的最小值;

3)该单位引进了一台加工设备,每个零件花费2元可以被加工一次,加工结果会等可能出现以下三种情况:①质量指标值增加1,②质量指标值不变,③质量指标值减少1.已知每个零件最多可被加工一次,且该单位计划将所有准合格品逐一加工,在(2)的条件下,估计的最小值(精确到0.01 .

【答案】17.9 29 38.67

【解析】

(1)用样本的平均值估计总体的平均数,即求出100个样本的平均数即可.
(2) 一个零件成本为5元,的价格出售,可得式子:可解出答案.
(3) 设为满足该订单需制作个零件,则有,求出需要制作的零件总数,然后再计算满足利润条件的值.

解:(1)设机器制造零件的质量指标值的平均数为

由题意得:

∴机器制造零件的质量指标值的平均数为7.9.

2)一个零件成本为5元,的价格出售,可得式子:

解得:

的最小值为9

3)依题意得,准合格品加工后有能合格,用于销售,

设为满足该订单需制作个零件,则有

解得

故要使获利达到1400元,需要

解得

的最小值为8.67.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy内,动点P到定点F(﹣10)的距离与P到定直线x=4的距离之比为.

1)求动点P的轨迹C的方程;

2)若轨迹C上的动点N到定点Mm0)(0m2)的距离的最小值为1,求m的值.

3)设点AB是轨迹C上两个动点,直线OAOB与轨迹C的另一交点分别为A1B1,且直线OAOB的斜率之积等于,问四边形ABA1B1的面积S是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的普通方程为.在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)写出圆的参数方程和直线的直角坐标方程;

2)设点上,点Q在上,求的最小值及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项,对任意的,都有,数列是公比不为的等比数列.

1)求实数的值;

2)设数列的前项和为,求所有正整数的值,使得恰好为数列中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由我国引领的5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G经济产出所做的预测.结合下图,下列说法正确的是(

A.5G的发展带动今后几年的总经济产出逐年增加

B.设备制造商的经济产出前期增长较快,后期放缓

C.设备制造商在各年的总经济产出中一直处于领先地位

D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,已知.

1)若的面积为,求的值;

2)若,且角为钝角,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有穷数列共有,且.

1)若,试写出一个满足条件的数列

2)若,求证:数列为递增数列的充要条件是

3)若,则所有可能的取值共有多少个?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形为矩形, ,的中点,沿折起,得到四棱锥,的中点为,在翻折过程中,得到如下有三个命题:

平面,且的长度为定值

三棱锥的最大体积为

③在翻折过程中,存在某个位置,使得.

其中正确命题的序号为__________.(写出所有正确结论的序号)

查看答案和解析>>

同步练习册答案