精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的连续函数fx)满足fx)=f2x),导函数为fx).当x1时,2fx+x1fx)>0,且f(﹣1,则不等式fx)<6x12的解集为(

A.(﹣11)∪(14B.(﹣11)∪(13

C.1)∪(12D.1)∪(1

【答案】B

【解析】

利用已知条件,结合函数的性质,构造函数g(x),通过函数的导数判断函数的单调性,然后转化求解即可得解.

定义在R上的连续函数f(x)满足f(x)= f(2-x),导函数为f′(x)

x>1时,2f(x)+(x-1)f′(x)>0,且f(-1)

g(x)=(x-1)2f(x),则g′(x)=2(x-1)f(x)+(x-1)2f′(x)=(x-1)[2f(x)+(x-1)f′(x)]

所以当x>1时,g′(x)>0,且g(-1)=g(3)=6

结合函数的图象,可知不等式f(x)<6(x-1)2的解集为(-1,1)∪(1,3)

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设有下列四个命题:

p1:两两相交且不过同一点的三条直线必在同一平面内.

p2:过空间中任意三点有且仅有一个平面.

p3:若空间两条直线不相交,则这两条直线平行.

p4:若直线l平面α,直线m⊥平面α,则ml.

则下述命题中所有真命题的序号是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),为曲线上的一动点.

(I)求动点对应的参数从变动到时,线段所扫过的图形面积;

(Ⅱ)若直线与曲线的另一个交点为,是否存在点,使得为线段的中点?若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知分别为椭圆的左、右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于直线于点,线段的中垂线交于点.记点的轨迹为曲线.

1)求曲线的方程,并说明是什么曲线;

2)若直线与曲线交于两点,则在圆上是否存在两点,使得?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l过抛物线Cy24x的焦点F且与C交于Ax1y1),Bx2y2)两点,则y1y2_____.过AB两点分别作抛物线C的准线的垂线,垂足分别为PQ,准线与x轴的交点为M,四边形FAPM的面积记为S1,四边形FBQM的面积记为S2,则S1S23|AF||BF|_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0)的右焦点为F,离心率为,且有3a24b2+1

1)求椭圆C的标准方程;

2)过点F的直线l与椭圆C交于MN两点,过点M作直线x3的垂线,垂足为点P,证明直线NP经过定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象上有且仅有两个不同的点关于直线的对称点在的图象上,则实数的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆长轴长为4,右焦点到左顶点的距离为3

1)求椭圆的方程;

2)设过原点的直线交椭圆于两点(不在坐标轴上),连接并延长交椭圆于点,若,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形与等边所在平面互相垂直,分别是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案