精英家教网 > 高中数学 > 题目详情

【题目】2020年初,新型冠状病毒肺炎(COVID19)在我国爆发,全国人民团结一心、积极抗疫,为全世界疫情防控争取了宝贵的时间,积累了丰富的经验.某研究小组为了研究某城市肺炎感染人数的增长情况,在官方网站.上搜集了7组数据,并依据数据制成如下散点图:

图中表示日期代号(例如21日记为“1”22日记为“2”,以此类推).通过对散点图的分析,结合病毒传播的相关知识,该研究小组决定用指数型函数模型来拟合,为求出关于的回归方程,可令,则线性相关.初步整理后,得到如下数据:

1)根据所给数据,求出关于的线性回归方程:

2)求关于的回归方程;若防控不当,请问为何值时,累计确诊人数的预报值将超过1000?(参考数据:,结果保留整数)

附:对于一组数据,其线性回归方程的斜率和截距的最小二乘估计公式分别为

【答案】12

【解析】

1)根据参考公式求出这两个系数,从而得到,于是可知回归方程;

2)把代入(1)中求出的回归方程,即可得到关于的回归方程为再解不等式即可得解.

1

关于的线性回归方程为

2)把代入

可得关于的回归方程为

,得

解得,即当时,累计确诊人数将超过1000人.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,四边形为平行四边形,中点.

1)求证:平面

2)求证:平面平面

3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百、千位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字大于200的概率为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )

A. 甲的极差是29 B. 甲的中位数是24

C. 甲罚球命中率比乙高 D. 乙的众数是21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】整数集就像一片浩瀚无边的海洋,充满了无尽的奥秘.古希腊数学家毕达哥拉斯发现220284具有如下性质:220的所有真因数之和恰好等于284,同时284的所有真因数之和也等于220,他把具有这种性质的两个整数叫做一对亲和数亲和数的发现吸引了古今中外无数数学爱好者的研究热潮.已知22028411841210292426203亲和数,把这六个数随机分成两组,一组2个数,另一组4个数,则220284在同一组的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,的中点,.现将沿翻折至,得四棱锥.

1)证明:

2)若,求直线与平面所成角的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,试讨论的单调性;

2)若,实数为方程的两不等实根,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求函数的单调区间;

(2)若函数有两个零点,求满足条件的最小正整数的值;

(3)若方程,有两个不相等的实数根,比较与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列选项中说法正确的是(

A.函数的单调减区间为

B.命题的否定是

C.在三角形中,,则的逆否命题是真命题

D.幂函数过点,则.

查看答案和解析>>

同步练习册答案