精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
如图,已知椭圆是椭圆的顶点,若椭圆的离心率,且过点.

(Ⅰ)求椭圆的方程;
(Ⅱ)作直线,使得,且与椭圆相交于两点(异于椭圆的顶点),设直线和直线的倾斜角分别是,求证:.

(Ⅰ)  (Ⅱ)可设直线的方程为,设
,故

解析试题分析:(Ⅰ)由已知得: 椭圆C的方程为
(Ⅱ)由(Ⅰ)知:

故可设直线的方程为,设

,即,
异于椭圆C的顶点,,




 
 
,∴ ,故.
考点:椭圆方程性质及直线与椭圆的位置关系
点评:直线与圆锥曲线相交,联立方程利用韦达定理是常用的思路,本题所证明的角的关系转化为直线斜率关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知为椭圆的焦点,且直线与椭圆相切.
(Ⅰ)求椭圆方程;
(Ⅱ)过的直线交椭圆于两点,求△的面积的最大值,并求此时直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题10分)双曲线的离心率等于4,且与椭圆有相同的焦点,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率e=.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)已知点,直线 交轴于点,点上的动点,过点垂直于的直线与线段的垂直平分线交于点
(Ⅰ)求点的轨迹的方程;(Ⅱ)若 A、B为轨迹上的两个动点,且 证明直线AB必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分) 已知动圆过定点,且与直线相切,椭圆 的对称轴为坐标轴,一个焦点是,点在椭圆上.
(Ⅰ)求动圆圆心的轨迹的方程及其椭圆的方程;
(Ⅱ)若动直线与轨迹处的切线平行,且直线与椭圆交于两点,问:是否存在着这样的直线使得的面积等于?如果存在,请求出直线的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知半径为6的圆轴相切,圆心在直线上且在第二象限,直线过点
(Ⅰ)求圆的方程;
(Ⅱ)若直线与圆相交于两点且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,点在椭圆上。
(1)求椭圆的离心率;
(2)若椭圆的短半轴长为,直线与椭圆交于A、B,且线段AB以M(1,1)为中点,求直线的方程。

查看答案和解析>>

同步练习册答案