精英家教网 > 高中数学 > 题目详情

已知是数列{}的前n项和,,那么数列{}是(   )

A.等比数列                             B.当p≠0时为等比数列

C.当p≠0,p≠1时为等比数列             D.不可能为等比数列

 

【答案】

D

【解析】

试题分析:根据题意,由于当n=1,

,若数列是等比数列,则可知,故可知首项不满足上式,因此可知选D.

考点:等比数列

点评:本题主要考查了等比数列的判定,同时考查了分类讨论的数学思想,属于基础题

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一个数列{an}的前n项和是Sn=
1
4
n2+
2
3
n+3

(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明{an}不是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数数列{an}的前n 项和为Sn,且(p-1)Sn=p2-an,(n∈N*,p>0,p≠1),
(1)求数列{an}的通项公式;
(2)若bn=
1
an+2
ln(
1
an+2
)
,求数列{bn}的前n项和Tn
(3)当p=
7
10
时,数列{bn}中是否存在最小项?若存在说明是第几项,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),若对于任意n?N*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=
px+1
x+1
确定数列{an}的自反数列为{bn},求an
(2)在(1)条件下,记
n
1
x1
+
1
x2
+…
1
xn
为正数数列{xn}的调和平均数,若dn=
2
an+1
-1
,Sn为数列{dn}的前n项之和,Hn为数列{Sn}的调和平均数,求
lim
n→∞
=
Hn
n

(3)已知正数数列{cn}的前n项之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数列{an}的前n项和为Sn,且有Sn=
1
4
(an+1)2
,数列{bn}是首项为1,公比为
1
2
的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)若c=anbn,求:数列{cn}的前n项和Tn
(3)求证:
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数列{an}的前n项和为Sn,且有Sn=
1
4
(an+1)2
,数列b1,b2-b1,b3-b2,…,bn-bn-1是首项为1,公比为
1
2
的等比数列.
(1)求证数列{an}是等差数列;
(2)若cn=an•(2-bn),求数列{cn}的前n项和Tn
(3)在(2)条件下,是否存在常数λ,使得数列(
Tn
an+2
)
为等比数列?若存在,试求出λ;若不存在,说明理由.

查看答案和解析>>

同步练习册答案