精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右顶点分别为,右焦点为,且上的动点的距离的最大值为4,最小值为2.

1)证明:.

2)若直线相交于两点(均不与重合),且,试问是否经过定点?若经过,求出此定点坐标;若不经过,请说明理由.

【答案】1)证明见解析;(2)存在,.

【解析】

1)根据题意,可得,即可解得椭圆的标准方程,设,表示出,利用坐标法表示,由,即可证明

2)联立直线与椭圆的方程,运用韦达定理可得根与系数的关系,由,运用坐标相乘可得,解出的关系,进行判断即可得出结论.

解:(1)证明:由题意可得,解得

,故的方程为.

,则.

,∴.

2)解:设,联立,得

,即,且

.

,∴

,即

所以.

时,直线,此时过定点,不合题意;

时,直线,此时直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若同时满足下列条件:

内单调递增或单调递减;

②存在区间,使上的值域为

那么把叫闭函数.

(1)求闭函数符合条件②的区间

(2)判断函数是否为闭函数?并说明理由;

(3)是闭函数,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,分别是的中点,将沿着向上翻折到的位置,连接.

1)求证:平面

2)若翻折后,四棱锥的体积,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.

(1)求椭圆的方程;

(2)已知定点,是否存在过的直线,使与椭圆交于两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆,如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于两点A,B,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).

(1)求m2+k2的最小值;

(2)若|OG|2=|OD||OE|,求证:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,侧面底面,底面为直角梯形,其中

O中点.

)求证:平面

)求锐二面角A—C1D1—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着教育信息化2.0时代的到来,依托网络进行线上培训越来越便捷,逐步成为实现全民终身学习的重要支撑.最近某高校继续教育学院采用线上和线下相结合的方式开展了一次300名学员参加的“国学经典诵读”专题培训.为了解参训学员对于线上培训、线下培训的满意程度,学院随机选取了50名学员,将他们分成两组,每组25人,分别对线上、线下两种培训进行满意度测评,根据学员的评分(满分100)绘制了如下茎叶图:

(1)根据茎叶图判断学员对于线上、线下哪种培训的满意度更高?并说明理由;

(2)50名学员满意度评分的中位数,并将评分不超过、超过分别视为基本满意”、“非常满意”两个等级.

(i)利用样本估计总体的思想,估算本次培训共有多少学员对线上培训非常满意?

(ii)根据茎叶图填写下面的列联表:

并根据列联表判断能否有99.5%的把握认为学员对两种培训方式的满意度有差异?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为F,过点的直线lE交于AB两点.l过点F时,直线l的斜率为,当l的斜率不存在时,.

1)求椭圆E的方程.

2)以AB为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案