精英家教网 > 高中数学 > 题目详情
如图,等边△ABC与直角梯形ABDE所在平面垂直,BDAE,BD=2AE,AE⊥AB,M为AB的中点.
(1)证明:CM⊥DE;
(2)在边AC上找一点N,使CD平面BEN.
精英家教网
(1)证明:因为BC=AC,M为AB中点.所以CM⊥AB,
又因为平面ABC⊥平面ABDE,平面ABC∩平面ABDE=AB,CM?平面ABC,
所以CM⊥平面ABDE,
又因DE?平面ABDE,所以CM⊥DE;(7分)
(2)当
AN
AC
=
1
3
时,CD平面BEN.
连接AD交BE于点K,连接KN,
因梯形ABDE中BDAE,BD=2AE,
所以
AK
KD
=
AE
BD
=
1
2
,则
AK
AD
=
1
3

又因
AN
AC
=
1
3
,所以KNCD(14分)
又KN?平面BEN,CD?平面BEN,所以CD平面BEN.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,等边△ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.
(1)证明:CM⊥DE;
(2)在边AC上找一点N,使CD∥平面BEN.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,等边△ABC与直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O为AB的中点.
(1)证明:CO⊥DE;
(2)求二面角C-DE-A的正切值大小.
(3)求B到平面CDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,等边△ABC与直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O为AB的中点.
(1)证明:CO⊥DE;
(2)求二面角C-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,等边△ABC与直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O为AB的中点.

(Ⅰ)证明:CO⊥DE;

(Ⅱ)求二面角C—DE—A的大小.

查看答案和解析>>

同步练习册答案