精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 为参数),A,B是C上的动点,且满足OA⊥OB(O为坐标原点),以原点O为极点,x轴的正半轴为极轴建立坐标系,点D的极坐标为
(1)求线段AD的中点M的轨迹E的普通方程;
(2)利用椭圆C的极坐标方程证明 为定值,并求△AOB的面积的最大值.

【答案】
(1)解:点D的直角坐标为 ,由题意可设点A的坐标为(2cosα,sinα)参数,

则线段AD的中点M的坐标为

所以点M的轨迹E的参数方程为 为参数)

消去α可得E的普通方程为


(2)解:椭圆C的普通方程为 ,化为极坐标方程得ρ2+3ρ2sin2θ=4,

变形得

由OA⊥OB,不妨设 ,所以

= (定值),

SAOB= ρ1ρ2= =

易知当sin2θ=0时,S取得最大值1.


【解析】(1)由题意求得线段AD中点坐标M,即可求得M的轨迹E的参数方程,消去α,即可求得E的普通方程;(2)由椭圆的普通方程,求得极坐标方程,求得 ,由OA⊥OB,根据 ,化简即可求得 = 为定值,根据三角形的面积公式,利用二倍角公式,及三角函数的性质,即可求得△AOB面积的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l1(k3)x(4k)y10l22(k3)x2y30.

(1)若这两条直线垂直k的值;

(2)若这两条直线平行k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在Rt△AOB中,AO=1,BO=2,如图,动点P是在以O点为圆心,OB为半径的扇形内运动(含边界)且∠BOC=90°;设 ,则x+y的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数y=f(x)满足f(3)=0,且当x>0时,不等式f(x)>﹣xf′(x)恒成立,则函数g(x)=xf(x)的零点的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在Rt△ABC中,∠C=90°BC=6AC=3DE分别是ACAB上的点,且DE∥BCDE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2

1)求证:平面

2)过点E作截面 平面,分别交CBFH,求截面的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形OBCD的顶点O与坐标原点重合,一边在x轴的正半轴上,已知∠BOD=60°,求菱形各边和两条对角线所在直线的倾斜角及斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O1的方程为x2(y1)24O2的圆心为O2(2,1)

(1)若圆O1与圆O2外切求圆O2的方程;

(2)若圆O1与圆O2交于AB两点|AB|2求圆O2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的可导函数f(x)的导函数f′(x),满足f′(x)<f(x),且f(x+2)=f(x﹣2),f(4)=1,则不等式f(x)<ex的解集为(
A.(0,+∞)
B.(1,+∞)
C.(4,+∞)
D.(﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数的图象上所有点的横坐标缩小到原来的(纵坐标不变),再将图象上所有点向右平移个单位,所得函数图象所对应的解析式为__

查看答案和解析>>

同步练习册答案