精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2=4,直线l过点P(1,2),且与圆C交于A,B两点,若|AB|=2
3
,求直线l的方程.
分析:分两种情况考虑:当直线l的斜率不存在时,根据直线l过P点,由P的坐标得出直线l的方程为x=1,经验证满足题意;当直线l的斜率存在时,设出斜率为k,由P及k表示出直线l的方程,根据圆的方程找出半径r=2及圆心坐标,再利用点到直线的距离公式表示出圆心到直线l的距离d,进而由弦长的一半,圆的半径r及弦心距d,利用勾股定理列出关于k的方程,求出方程的解得到k的值,可得出此时直线l的方程,综上,得到所有满足题意的直线l的方程.
解答:解:分两种情况考虑:
(i)当直线l的斜率不存在时(或直线l与x轴垂直),
由P(1,2),得到直线l为x=1,
该直线与圆x2+y2=4相交于两点A(1,
3
),B(1,-
3
),
满足|AB|=2
3
,符合题意;(4分)
(ii)当直线l的斜率存在时,设直线l的斜率为k,
由P(1,2),得到直线l方程为y-2=k(x-1),即kx-y+(2-k)=0,
由圆的方程x2+y2=4,得到圆心坐标为(0,0),半径r=2,
∴圆心到直线l的距离d=
|2-k|
k2+1
,又|AB|=2
3

∴d2+(
|AB|
2
2=r2,即(
|2-k|
k2+1
2+(
3
2=4,
整理得:-4k=-3,解得:k=
3
4

此时直线l的方程为
3
4
x-y+(2-
3
4
)=0,即3x-4y+5=0,(11分)
综上,直线l的方程为x=1或3x-4y+5=0.(12分)
点评:此题考查了直线与圆相交的性质,涉及的知识有:直线的点斜式方程,圆的标准方程,勾股定理,垂径定理,以及点到直线的距离公式,利用了分类讨论的思想,当直线与圆相交时,常常根据垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案