精英家教网 > 高中数学 > 题目详情

【题目】东西向的铁路上有两个道口,铁路两侧的公路分布如图,位于的南偏西,且位于的南偏东方向,位于的正北方向,,处一辆救护车欲通过道口前往处的医院送病人,发现北偏东方向的处(火车头位置)有一列火车自东向西驶来,若火车通过每个道口都需要分钟,救护车和火车的速度均为.

1)判断救护车通过道口是否会受火车影响,并说明理由;

2)为了尽快将病人送到医院,救护车应选择中的哪个道口?通过计算说明.

【答案】1)救护车通过会受影响,详见解析(2)选择过道,详见解析

【解析】

1)因为位于的南偏西,北偏东方向上,在中,,,根据正弦定理求得,求得救护车到达处需要时间,结合已知,即可求得答案;

2)分别求出选择道口共需要花费时间和选择道口共需要花费时间,即可求得答案.

1位于的南偏西,北偏东方向上

中,,

正弦定理可得:

解得:.

救护车和火车的速度均为

救护车到达处需要时间:,

火车到达处需要时间:,火车影响道口时间为,

救护车通过会受影响.

2)若选择道口:

一共需要花费时间为:

若选择道口:

通过道口不受火车影响,

一共需要花费时间为:

由余弦定理求长:

.

选择过道.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图(1),函数的图象与x轴围成一个封闭区域A(阴影部分),将区域A(阴影部分)沿z轴的正方向上移6个单位,得到一几何体.现有一个与之等高的底面为椭圆的柱体如图(2)所示,其底面积与区域A(阴影部分)的面积相等,则此柱体的体积为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形(如图1),为线段中点.沿折起,使平面平面,得到几何体(如图2.

1)求证:平面

2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点与椭圆的右焦点重合抛物线的动弦过点过点且垂直于弦的直线交抛物线的准线于点.

(Ⅰ)求抛物线的标准方程;

(Ⅱ)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】华为董事会决定投资开发新款软件,估计能获得万元到万元的投资收益,讨论了一个对课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过投资收益的.

1)请分析函数是否符合华为要求的奖励函数模型,并说明原因;

2)若华为公司采用模型函数作为奖励函数模型,试确定正整数的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数与函数的图象有两个不同的公共点.

1)求实数的取值范围;

2)设点是线段的中点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的短轴长和焦距相等,左、右焦点分别为,点满足:.已知直线l与椭圆C相交于AB两点.

1)求椭圆C的标准方程;

2)若直线l过点,且,求直线l的方程;

3)若直线l与曲线相切于点),且中点的横坐标等于,证明:符合题意的点T有两个,并任求出其中一个的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的极值;

2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数g(x)ax2bxc(a≠0)满足g(x1)2xg(x),且g(0)1.

1)求g(x)的解析式;

2)若在区间[1,1]上,不等式g(x)-t>2x恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案