精英家教网 > 高中数学 > 题目详情
1.将函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)图象上每一点的横坐标变为原来的一半,纵坐标不变,再向右平移$\frac{π}{6}$个单位长度得到y=sinx的图象.
 (1)求f(x)的解析式:
(2)当x∈[0,3π]时,方程f(x)=m有唯一实数根,求m的取值范围.

分析 (1)由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
(2)当x∈[0,3π]时,$\frac{1}{2}$x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{5π}{3}$],sin($\frac{1}{2}$x+$\frac{π}{6}$)∈[-1,1].令t=$\frac{1}{2}$x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{5π}{3}$],由题意可得g(t)=sint 的图象和直线y=m有唯一的交点,结合图象可得m的范围.

解答 解:(1)由题意可得,把y=sinx的图象向左平移$\frac{π}{6}$个单位长度得到y=sin(x+$\frac{π}{6}$)的图象;
再把所得图象上每一点的横坐标变为原来的2倍,纵坐标不变,可得y=sin($\frac{1}{2}$x+$\frac{π}{6}$)的图象,
故f(x)=sin(ωx+φ)=sin($\frac{1}{2}$x+$\frac{π}{6}$),求得ω=$\frac{1}{2}$,φ=$\frac{π}{6}$,即f(x)=sin($\frac{1}{2}$x+$\frac{π}{6}$).
(2)当x∈[0,3π]时,$\frac{1}{2}$x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{5π}{3}$],sin($\frac{1}{2}$x+$\frac{π}{6}$)∈[-1,1].
令t=$\frac{1}{2}$x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{5π}{3}$],
方程f(x)=m有唯一实数根,即函数f(x)=g(t)=sint 的图象和直线y=m有唯一的交点.
结合图象可得,当-0.5<m<0.5时,g(t)=sint 的图象和直线y=m有唯一的交点,
故m的范围为:-0.5<m<0.5,或m=1,或 m=-1.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,方程根的存在性以及个数判断,体现了数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$=(1,1),$\frac{1}{|\overrightarrow{BA}|}$$\overrightarrow{BA}$+$\frac{1}{|\overrightarrow{BC}|}$$\overrightarrow{BC}$=$\frac{\sqrt{3}}{|\overrightarrow{BD}|}$$\overrightarrow{BD}$,则四边形ABCD的面积是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:$\frac{1}{2}$lg25+lg2-lg$\sqrt{0.1}$-log249•log72+log3$\frac{\root{4}{27}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\frac{{x}^{2}+x+2}{{x}^{2}+2}$在x∈[-t,t]上的最大值与最小值之和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知1og189=a,18b=5,求log3645;
(2)设3x=4y =36,求$\frac{2}{x}$+$\frac{1}{y}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=alog2x-blog3x+3,若f($\frac{1}{2015}$)=5,则f(2015)等于(  )
A.1B.2C.3D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用logax,logay,logaz表示loga$\frac{{z}^{-3}}{x•{y}^{-2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列运算正确的是(  )
A.log32•log36=log312B.log32•log36=log38
C.log32•log43=log126D.log32•log43=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.求log3(81$\sqrt{3}$)+$\frac{2lg(lg{a}^{100})}{2+lg(lga)}$=$\frac{13}{2}$.

查看答案和解析>>

同步练习册答案