精英家教网 > 高中数学 > 题目详情
12.下列四个推导过程符合演绎推理三段论形式且推理正确的是(  )
A.大前提:无限不循环小数是无理数;小前提:$\sqrt{11}$是无理数;结论:$\sqrt{11}$是无限不循环小数
B.大前提:无限不循环小数是无理数;小前提:$\sqrt{11}$是无限不循环小数;结论:$\sqrt{11}$是无理数
C.大前提:$\sqrt{11}$是无限不循环小数;小前提:无限不循环小数是无理数;结论:$\sqrt{11}$是无理数
D.大前提:$\sqrt{11}$是无限不循环小数;小前提:$\sqrt{11}$是无理数;结论:无限不循环小数是无理数

分析 根据三段论推理的标准形式,逐一分析四个答案中的推导过程,可得出结论.

解答 解:对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;
对于B,符合演绎推理三段论形式且推理正确;
对于C,大小前提颠倒,不符合演绎推理三段论形式;
对于D,大小前提及结论颠倒,不符合演绎推理三段论形式;
故选:B

点评 本题主要考查推理和证明,三段论推理的标准形式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机抽取两个球,用球的编号列出所有可能的抽取结果,并求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,用球的编号列出所有可能的抽取结果,并求n≥m+2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$sin($\frac{1}{2}$x-$\frac{π}{4}$).
(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)求f($\frac{π}{3}$-x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:$\frac{tan12°+tan33°}{1-tan12°tan33°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设-$\frac{π}{2}$≤x≤$\frac{π}{2}$,且方程cos2x-4acosx-a+2=0有两个不同的解,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简:2sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2sinωx•cosωx+2$\sqrt{3}$cos2ωx-$\sqrt{3}$(其中ω>0),且f(x)满足f(x+$\frac{π}{2}$)=-f(x).
(1)求ω的值;
(2)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再将所得图象各点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[-$\frac{π}{8}$,$\frac{π}{24}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知圆台的上下底面半径分别为1cm和3cm,母线长为8cm,P是母线MN的中点,由M出发,沿圆台侧面绕一周到达点P,求经过的最短路程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+x-1
(1)若f(x)=5,求x的值;
(2)若f(x)≥f(a)对一切x∈R恒成立,求实数α的取值范围.

查看答案和解析>>

同步练习册答案