精英家教网 > 高中数学 > 题目详情

【题目】是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与的浓度是否有关,现采集到某城市周一至周五某一时间段车流量与的浓度的数据如下表:

时间

周一

周二

周三

周四

周五

车流量(万辆)

100

102

108

114

116

的浓度(微克/立方米)

78

80

84

88

90

1)根据上表数据,用最小二乘法求出关于的线性回归方程;

2)若周六同一时间段车流量是200万辆,试根据(1)求出的线性回归方程,预测此时的浓度为多少.

参考公式:,.

【答案】(1);(2)可以预测此时的浓度约为150.24微克/立方米.

【解析】

1)根据表中数据,计算的值,求出,写出线性回归方程;

2)计算x=200的值,即可预测出PM2.5的浓度.

1)由已知条件可得,

所以

.

关于的线性回归方程为.

2)当时,.

所以可以预测此时的浓度约为150.24微克/立方米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量是平面内的一组基向量,内的定点,对于内任意一点时,则称有序实数对为点的广义坐标,若点的广义坐标分别为,对于下列命题:

线段的中点的广义坐标为

A两点间的距离为

向量平行于向量的充要条件是

向量垂直于向量的充要条件是.

其中的真命题是________(请写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名射击运动员一次射击命中目标的概率分别是0.70.6,且每次射击命中与否相互之间没有影响,求:

1)甲射击三次,第三次才命中目标的概率;

2)甲、乙两人在第一次射击中至少有一人命中目标的概率;

3)甲、乙各射击两次,甲比乙命中目标的次数恰好多一次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 命题都是假命题,则命题“”为真命题.

B. ,函数都不是奇函数.

C. 函数的图像关于对称 .

D. 将函数的图像上所有点的横坐标伸长到原来的2倍后得到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若为偶函数,求的值并写出的增区间;

(Ⅱ)若关于的不等式的解集为,当时,求的最小值;

(Ⅲ)对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的二次函数,其中为实数,事件函数在区间为增函数”.

1)若为区间上的整数值随机数,为区间上的整数值随机数,求事件发生的概率;

2)若为区间上的均匀随机数,为区间上的均匀随机数,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

)求椭圆和双曲线的标准方程;

)设直线的斜率分别为,证明

)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,直线是曲线的一条切线

(1)求实数a的值;

(2)若对任意的x(0,),都有,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子里装有标号为张标签,随机的选取两张标签.

1)若标签的选取是无放回的,求两张标签上的数字为相邻整数的概率;

2)若标签的选取是有放回的,求两张标签上的数字至少有一个为5的概率.

查看答案和解析>>

同步练习册答案