精英家教网 > 高中数学 > 题目详情

【题目】(导学号:05856310)

已知函数f(x)=x+ln x(a∈R).

(Ⅰ)当a=2时, 求函数f(x)的单调区间;

(Ⅱ)若关于x的函数g(x)=f(x)+ln x+2e(e为自然对数的底数)有且只有一个零点,求实数a的值.

【答案】(1) f(x)的单调递增区间为(1,+∞),函数f(x)的单调递减区间为(0,1). (2) a=e2

【解析】试题分析:(1)求出f(x)的导数,解关于导函数的不等式,求出函数的单调区间即可;

2)把方程化为 =x22ex+a,求得 hx=的最大值为 he=,再求得mx=x22ex+a 的最小值 me=ae2,根据 ae2=求出a的值.

试题解析:

(Ⅰ)由题知函数f(x)的定义域为(0,+∞),

a=2时,f′(x)=1-

x>1时f′(x)>0,当0<x<1时f′(x)<0,

∴函数f(x)的单调递增区间为(1,+∞),函数f(x)的单调递减区间为(0,1).

(Ⅱ)由g(x)=x+2e=0得x-2e,化为x2-2exa.

h(x)=,则h′(x)=,令h′(x)=0,得x=e,当0<x<e时,h′(x)>0; 当x>e时,h′(x)<0,∴函数h(x)在区间(0,e)上单调递增,在区间(e,+∞)上单调递减,

∴当x=e时,函数h(x)取得最大值,其值为h(e)=.

而函数m(x)=x2-2exa=(x-e)2a-e2

x=e时,函数m(x)取得最小值,其值为m(e)=a-e2

∴当a-e2,即a=e2时,方程f(x)+ln x+2e=0只有一个根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(导学号:05856266)[选修4-5:不等式选讲]

设函数f(x)=|2x-1|-|x+2|.

(Ⅰ)解不等式f(x)>0;

(Ⅱ)若x0∈R,使得f+2m2<4m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是矩形平面.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,则下列结论正确的是(  )

A. S2 016=-2 016,a2 013>a4

B. S2 016=2 016,a2 013>a4

C. S2 016=-2 016,a2 013<a4

D. S2 016=2 016,a2 013<a4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856301)已知函数f(x)=m(x-1)exx2(m∈R),其导函数为f′(x),若对任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,则实数m的取值范围为(  )

A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856317)为了调查“小学成绩”与“中学成绩”两个变量之间是否存在相关关系,某科研机构将所调查的结果统计如下表所示:

中学成绩不优秀

中学成绩优秀

总计

小学成绩优秀

5

20

25

小学成绩不优秀

10

5

15

总计

15

25

40

则下列说法正确的是(  )

参考数据:

P(K2k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k0

0.46

0.71

1.32

2.07

2.71

3.84

5.024

6.635

7.879

10.828

A. 在犯错误的概率不超过0.1的前提下,认为“小学成绩与中学成绩无关”

B. 在犯错误的概率不超过0.1的前提下,认为“小学成绩与中学成绩有关”

C. 在犯错误的概率不超过0.01的前提下,认为“小学成绩与中学成绩无关”

D. 在犯错误的概率不超过0.01的前提下,认为“小学成绩与中学成绩有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856333)

已知椭圆C (a>b>0)的离心率为,其右焦点为F(c,0),第一象限的点A在椭圆C上,且AFx轴.

(Ⅰ)若椭圆C过点(1,- ),求椭圆C的标准方程;

(Ⅱ)已知直线lyxc与椭圆C交于MN两点,且B(4cyB)为直线l上的点,证明:直线AMABAN的斜率满足kAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知px0(1,1)xx0m0(mR)”是正确的,设实数m的取值集合为M.

(1)求集合M

(2)设关于x的不等式(xa)(xa2)<0(aR)的解集为N,若xMxN的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知表1和表2是某年部分日期的天安门广场升旗时刻表:

表1:某年部分日期的天安门广场升旗时刻表

日期

升旗时刻

日期

升旗时刻

日期

升旗时刻

日期

升旗时刻

1月1日

7:36

4月9日

5:46

7月9日

4:53

10月8日

6:17

1月21日

7:11

4月28日

5:19

7月27日

5:07

10月26日

6:36

2月10日

7:14

5月16日

4:59

8月14日

5:24

11月13日

6:56

3月2日

6:47

6月3日

4:47

9月2日

5:42

12月1日

7:16

3月22日

6:15

6月22日

4:46

9月20日

5:50

12月20日

7:31

表2:某年1月部分日期的天安门广场升旗时刻表

日期

升旗时刻

日期

升旗时刻

日期

升旗时刻

2月1日

7:23

2月11日

7:13

2月21日

6:59

2月3日

7:22

2月13日

7:11

2月23日

6:57

2月5日

7:20

2月15日

7:08

2月25日

6:55

2月7日

7:17

2月17日

7:05

2月27日

6:52

2月9日

7:15

2月19日

7:02

2月28日

6:49

(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;

(2)甲、乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立,记为这两人中观看升旗的时刻早于7:00的人数,求的 分布列和数学期望;

(3)将表1和表2的升旗时刻化为分数后作为样本数据(如7:31化为),记表2中所有升旗时刻对应数据的方差为,表1和表2中所有升旗时刻对应数据的方差为,判断的大小(只需写出结论).

查看答案和解析>>

同步练习册答案