精英家教网 > 高中数学 > 题目详情
16.已知曲线y=$\frac{1}{{e}^{x}+1}$,则曲线的切线斜率最小值为-$\frac{1}{4}$.

分析 先求出曲线对应函数的导数,由基本不等式求出导数的最大值,即得到曲线斜率的最大值.

解答 解:∵y=$\frac{1}{{e}^{x}+1}$,
∴y′=-$\frac{{e}^{x}}{({e}^{x}+1)^{2}}$=-$\frac{1}{{e}^{x}+{e}^{-x}+2}$
∴曲线的切线的斜率k=tanα=y′=-$\frac{1}{{e}^{x}+{e}^{-x}+2}$
≥-$\frac{1}{2\sqrt{{e}^{x}•{e}^{-x}}+2}$=-$\frac{1}{4}$,
当且仅当ex=e-x即x=0时,等号成立.
∴曲线的切线斜率最小值为-$\frac{1}{4}$.
故答案为:-$\frac{1}{4}$.

点评 本题考查曲线的切线斜率与对应的函数的导数的关系,以及基本不等式的应用,体现了转化的数学思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知y=f(x)对任意x有f(-x)=f(x),f(x)=-f(x+1),且在[0,1]上为减函数,则(  )
A.f($\frac{7}{5}$)<f($\frac{7}{2}$)<f($\frac{7}{3}$)B.f($\frac{7}{2}$)<f($\frac{7}{3}$)<f($\frac{7}{5}$)C.f($\frac{7}{3}$)<f($\frac{7}{2}$)<f($\frac{7}{5}$)D.f($\frac{7}{5}$)<f($\frac{7}{3}$)<f($\frac{7}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过已知双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左焦点F1作⊙O2:x2+y2=4的两条切线,记切点为A,B,双曲线的左顶点为C,若∠ACB=120°,则双曲线的离心率为(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.执行如图所示程序框图,若输入x=-6.5,则输出y的值为2.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,三内角A、B、C所对的边分别是a、b、c,且满足a=($\sqrt{3}$-1)c,$\frac{cotC}{cotB}$=$\frac{2a-c}{c}$,求A、B、C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若${(a-\frac{1}{a})^9}$的展开式的第8项的系数是a4,且对任意实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a1+a2+a3+a4的值为-17.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}x+\frac{1}{x},\;\;x≥1\\ 2x-{x^2},\;x<1\end{array}$,若f(ax2+1)>f(ax)对任意x∈R恒成立,则实数a的取值范围为[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=2|x-2|-x+5.
(Ⅰ)求函数f(x)的最小值m;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若将函数y=sin(ωx+$\frac{π}{4}$)(ω>0)的图象向右平移$\frac{π}{4}$个单位长度后,与函数y=sin(ωx+$\frac{π}{3}$)的图象重合,则ω的最小值为$\frac{23}{3}$.

查看答案和解析>>

同步练习册答案