分析 先求出曲线对应函数的导数,由基本不等式求出导数的最大值,即得到曲线斜率的最大值.
解答 解:∵y=$\frac{1}{{e}^{x}+1}$,
∴y′=-$\frac{{e}^{x}}{({e}^{x}+1)^{2}}$=-$\frac{1}{{e}^{x}+{e}^{-x}+2}$
∴曲线的切线的斜率k=tanα=y′=-$\frac{1}{{e}^{x}+{e}^{-x}+2}$
≥-$\frac{1}{2\sqrt{{e}^{x}•{e}^{-x}}+2}$=-$\frac{1}{4}$,
当且仅当ex=e-x即x=0时,等号成立.
∴曲线的切线斜率最小值为-$\frac{1}{4}$.
故答案为:-$\frac{1}{4}$.
点评 本题考查曲线的切线斜率与对应的函数的导数的关系,以及基本不等式的应用,体现了转化的数学思想.属于中档题.
科目:高中数学 来源: 题型:选择题
A. | f($\frac{7}{5}$)<f($\frac{7}{2}$)<f($\frac{7}{3}$) | B. | f($\frac{7}{2}$)<f($\frac{7}{3}$)<f($\frac{7}{5}$) | C. | f($\frac{7}{3}$)<f($\frac{7}{2}$)<f($\frac{7}{5}$) | D. | f($\frac{7}{5}$)<f($\frac{7}{3}$)<f($\frac{7}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com