精英家教网 > 高中数学 > 题目详情
(2013•天津模拟)直线l:
x=a+4t
y=-1-2t
(t为参数),圆C:ρ=2
2
cos(θ+
π
4
)
(极轴与x轴的非负半轴重合,且单位长度相同),若直线l被圆C截得的弦长为
6
5
5
,则实数a的值为
0或2
0或2
分析:化直线的参数方程为普通方程,化圆的极坐标方程为一般方程,由直线l被圆C截得的弦长为
6
5
5
转化为圆心到直线的距离,由点到直线的距离公式求解实数a的值.
解答:解:直线l:
x=a+4t①
y=-1-2t②
,由②得,t=-
y
2
-
1
2
,代入①得直线l的方程为x+2y+(2-a)=0,
由ρ=2
2
cos(θ+
π
4
)
,得ρ=2
2
(cos
π
4
cosθ-sin
π
4
sinθ)=2
2
(
2
2
cosθ-
2
2
sinθ)
=2cosθ-2sinθ.
ρ2=2ρcosθ-2ρsinθ,所以圆的方程为x2+y2=2x-2y,即(x-1)2+(y+1)2=2,
所以圆心为(1,-1),半径r=
2
.若直线l被圆C截得的弦长为
6
5
5

则圆心到直线的距离d=
r2-(
3
5
5
)
2
=
2-
9
5
=
5
5

d=
|1-2+2-a|
1+22
=
|1-a|
5
=
5
5
,即|1-a|=1,
解得a=0或a=2.
故答案为0或2.
点评:本题考查了参数方程化普通方程,考查了极坐标和直角坐标的互化,训练了点到直线的距离公式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天津模拟)已知函数f(x)=sin2x+2
3
sinxcosx+3cos2x,x∈R.求:
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)求函数f(x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津模拟)已知函数f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,g(x)=1-x+
x2
2
-
x3
3
+
x4
4
-…-
x2013
2013
,设函数F(x)=f(x+3)•g(x-4),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津模拟)在平行四边形ABCD中,
AE
=
EB
CF
=2
FB
,连接CE、DF相交于点M,若
AM
AB
AD
,则实数λ与μ的乘积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津模拟)阅读如图的程序框图,若运行相应的程序,则输出的S的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津模拟)设椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若过A、B、F2三点的圆恰好与直线x-
3
y-3=0
相切,求椭圆C的方程;                      
(Ⅲ)在(Ⅱ)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,若点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,求m的取值范围.

查看答案和解析>>

同步练习册答案