精英家教网 > 高中数学 > 题目详情

(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.

(I)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1

(II)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.

 

【答案】

(I)见解析(II)

【解析】(I)在平面ABC内,过点P作直线l∥BC

∵直线l⊄平面A1BC,BC⊂平面A1BC,

∴直线l∥平面A1BC,

∵△ABC中,AB=AC,D是BC的中点,

∴AD⊥BC,结合l∥BC得AD⊥l

∵AA1⊥平面ABC,l⊂平面ABC,∴AA1⊥l

∵AD、AA1是平面ADD1A1内的相交直线

∴直线l⊥平面ADD1A1

(II)连接A1P,过点A作AE⊥A1P于E,过E点作EF⊥A1M于F,连接AF

由(I)知MN⊥平面A1AE,结合MN⊂平面A1MN得平面A1MN⊥平面A1AE,

∵平面A1MN∩平面A1AE=A1P,AE⊥A1P,∴AE⊥平面A1MN,

∵EF⊥A1M,EF是AF在平面A1MN内的射影,

∴AF⊥A1M,可得∠AFE就是二面角A﹣A1M﹣N的平面角

设AA1=1,则由AB=AC=2AA1,∠BAC=120°,可得∠BAD=60°,AB=2且AD=1

又∵P为AD的中点,∴M是AB的中点,得AP=,AM=1

Rt△A1AP中,A1P==;Rt△A1AM中,A1M=

∴AE==,AF==

∴Rt△AEF中,sin∠AFE==,可得cos∠AFE==

即二面角A﹣A1M﹣N的余弦值等于

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A'B'C'中,若E、F分别为AB、AC的中点,平面EB'C'F将三棱柱分成体积为V1、V2的两部分,那么V1:V2为(  )
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,则此三棱柱的侧视图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,四边形A1ABB1为菱形,∠A1AB=60°,四边形BCC1B1为矩形,若AB⊥BC且AB=4,BC=3
(1)求证:平面A1CB⊥平面ACB1
(2)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若N是AB上一点,且
AN
AB
=
CM
CC1
,求证:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分别在线段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案