精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+bx+c(b,c∈R)为偶函数,如果点A(x,y)在函数f(x)的图象上,且点B(x,y2+1)在g(x)=f(x2+c)的图象上.
(1)求函数f(x)的解析式;
(2)设F(x)=g(x)-λf(x).是否存在实数λ,使F(x)在(-∞,-
2
2
)
上为减函数,且在[-
2
2
,0)
上为增函数?若存在,求出λ的值;若不存在,请说明理由.
分析:利用偶函数的定义列出恒成立的等式,求出b的值;再点A(x,y)在函数f(x)的图象上,且点B(x,y2+1)在g(x)=f(x2+c)的图象上,求出b,c的值;
(2)由f(x)求g(x),再求F(x)解析式,求F(x1)-F(x2)的表达式,最后要变形为因式相乘的形式;根据单调性得出这个式子的正负,从而得出λ的范围,由两个范围取交集可得λ的值.
解答:解:(1)∵f(x)=x2+bx+c为偶函数,故f(-x)=f(x),即有(-x)2+b(-x)+c=x2+bx+c,解得b=0.
由因为点A(x,y)在函数f(x)的图象上,且点B(x,y2+1)在g(x)=f(x2+c)的图象上,所以c=1,所以f(x)=x2+1
(2)解:g(x)=f(x2+1)=(x2+1)2+1=x4+2x2+2.
F(x)=g(x)-λf(x)=x4+(2-λ)x2+(2-λ),F(x1)-F(x2)=(x1+x2)(x1-x2)[x12+x22+(2-λ)]
由题设当x1<x2-
2
2
时,(x1+x2)(x1-x2)>0,x12+x22+(2-λ)>
1
2
+
1
2
+2-λ=3-λ,
则3-λ≥0,λ≤3;
-
2
2
<x1<x2<0时,(x1+x2)(x1-x2)>0,x12+x22+(2-λ)>
1
2
+
1
2
+2-λ=3-λ,
则3-λ≤0,λ≥3故λ=3.
点评:解决函数的奇偶性问题,一般利用奇函数、偶函数的定义找关系;注意具有奇偶性的函数的定义域关于原点对称;求参数的值,用函数的单调性定义求解,属于定义的逆用,知单调性来判断差的正负.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案