精英家教网 > 高中数学 > 题目详情

【题目】有以下命题:如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;为空间四点,且向量不构成空间的一个基底,那么点一定共面;已知向量是空间的一个基底,则向量,也是空间的一个基底。其中正确的命题是( )

A. ①②B. ①③C. ②③D. ①②③

【答案】C

【解析】

根据空间向量的基底判断②③的正误,找出反例判断命题的正误,即可得到正确选项.

解:如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;所以不正确.反例:如果有一个向量为零向量,共线但不能构成空间向量的一组基底,所以不正确.

OABC为空间四点,且向量不构成空间的一个基底,那么点OABC一定共面;这是正确的.

已知向量是空间的一个基底,则向量,也是空间的一个基底;因为三个向量非零不共线,正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,点是对角线上的动点(点不重合),则下列结论正确的是__________

①存在点,使得平面平面

②存在点,使得平面平面

的面积可能等于

④若分别是在平面与平面的正投影的面积,则存在点,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角坐标系xOy中,圆Ox2+y2=4x轴负半轴交于点A,过点A的直线AMAN分别与圆O交于MN两点,设直线AMAN的斜率分别为k1k2

1)若,求AMN的面积;

2)若k1k2=-2,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知椭圆E的中心在原点,长轴长为8,椭圆在X轴上的两个焦点与短轴的一个顶点构成等边三角形.

求椭圆的标准方程;

过椭圆内一点的直线与椭圆E交于不同的A,B两点,交直线于点N,若,求证:为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,当点EB1D1(与B1D1不重合)上运动时,总有:

AEBC1 ②平面AA1E⊥平面BB1D1D

AE∥平面BC1D A1CAE

以上四个推断中正确的是(

A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求曲线在点处的切线方程;

(2)求函数的单调区间;

(3)当时,求函数在上区间零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性并指出相应单调区间;

2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推动更多人阅读,联合国教科文组织确定每年的日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了名居民,经统计这人中通过电子阅读与纸质阅读的人数之比为,将这人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示.

(1)求的值及通过电子阅读的居民的平均年龄;

(2)把年龄在第组的居民称为青少年组,年龄在第组的居民称为中老年组,若选出的人中通过纸质阅读的中老年有人,请完成上面列联表,则是否有的把握认为阅读方式与年龄有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

讨论的单调区间;

时,上的最小值为,求上的最大值.

查看答案和解析>>

同步练习册答案