精英家教网 > 高中数学 > 题目详情
已知是空间不同的直线,是不同的平面,给出下列四个命题:
           ②
          ④
其中为真命题的是(    )
A.①③B.①④C.②③D.③④
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面a、b和两条不重合的直线m、n,有下列四个命题  
①若m//nm^a,则n^a;         ②若m^a,m^b,则a//b;
③若m^a,m//nnÌb,则a^b;   ④若m//a,aÇb=n,则m//n.
其中正确命题的个数是       
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在三棱锥P-ABC中, PA=3,AC=AB=4,PB=PC=BC=5,D、E分别是BC、AC的中点,F为PC上的一点,且PF:FC=3:1.
(1)求证:PA⊥BC;
(2)试在PC上确定一点G,使平面ABG∥平面DEF;
(3)在满足(2)的情况下,求二面角G-AB-C的平面
角的正切值.


 
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是空间两条不同直线,是两个不同平面,下面有四个命题:
           ②
           ④
其中真命题的编号是        ;(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(12分)如图,直三棱柱ABC—A1B1C1的底面是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=D是线段A1B的中点.                                       

(1)证明:面⊥平面A1B1BA;
(2)证明:
(3)求棱柱ABC—A1B1C1被平面分成两部分的体积比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。  
(Ⅰ)求证:ACSD
(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将半径为4,中心角为900的扇形卷成一个圆锥,该圆锥的高为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为平面,为直线,则的一个充分条件是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,下列命题正确的是( )
A.若,则B.若
C.若,则D.若

查看答案和解析>>

同步练习册答案