精英家教网 > 高中数学 > 题目详情

【题目】过双曲线的左焦点作圆的切线交双曲线的右支于点,且切点为,已知为坐标原点,为线段的中点(点在切点的右侧),若的周长为,则双曲线的渐近线的方程为( )

A. B. C. D.

【答案】B

【解析】

先从双曲线方程得:ab.连OT,则OTF1T,在直角三角形OTF1中,|F1T|b.连PF2M为线段F1P的中点,O为坐标原点得出|MO||MT|PF2﹣( MF1F1TPF2MF1)﹣b最后结合周长与勾股定理可得结果.

解:连OT,则OTF1T

在直角三角形OTF1中,|F1T|b

PF2M为线段F1P的中点,O为坐标原点

OMPF2

|MO||MT|PF2﹣( PF1F1TPF2PF1+b

ba

|MO|+|MT|+|TO|=,即|MO|+|MT|=3a

|MO|=, |MT|=,

由勾股定理可得:,即

∴渐近线方程为:

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,从参加环保知识竞赛的1200名学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

1这一组的频数、频率分别是多少?

2)估计这次环保知识竞赛的及格率。(分及以上为及格)

3)若准备取成绩最好的300名发奖,则获奖的最低分数约为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点为圆上一动点,过点分别作轴,轴的垂线,垂足分别为,连接延长至点,使得,点的轨迹记为曲线.

(1)求曲线的方程;

(2)若点分别位于轴与轴的正半轴上,直线与曲线相交于两点,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在正整数n的各位数字中,共含有个1,个2,,个n.证明:并确定使等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,ACAB边上的中线长之和等于9

1)求重心M的轨迹方程;

2)求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市面上有某品牌型和型两种节能灯,假定型节能灯使用寿命都超过5000小时,经销商对型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:

某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,20瓦和55瓦的两种节能灯照明效果相当,都适合安装.已知型和型节能灯每支的价格分别为120元、25元,当地商业电价为0.75/千瓦时.假定该店面一年周转期的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯管更换.(用频率估计概率)

)根据频率直方图估算型节能灯的平均使用寿命;

)根据统计知识知,若一支灯管一年内需要更换的概率为,那么支灯管估计需要更换.若该商家新店面全部安装了型节能灯,试估计一年内需更换的支数;

)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,F是椭圆的左焦点,椭圆的离心率为B为椭圆的左顶点和上顶点,点Cx轴上,的外接圆M恰好与直线相切.

1求椭圆的方程;

2过点C的直线与已知椭圆交于PQ两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为的正方体中,分别是棱所在直线上的动点:

1)求的取值范围:

2)若为面内的一点,且,求的余弦值:

3)若分别是所在正方形棱的中点,试问在棱上能否找到一点,使平面?若能,试确定点的位置,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国西部某省级风景区内住着一个少数民族村,该村投资了万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按天计算)每天的旅游人数与第天近似地满足(千人),且参观民俗文化村的游客人均消费近似地满足(元).

(1)求该村的第x天的旅游收入,并求最低日收入为多少?(单位:千元,);

(2)若以最低日收入的作为每一天的纯收入计量依据,并以纯收入的税率收回投资成本,试问该村在两年内能否收回全部投资成本?

查看答案和解析>>

同步练习册答案