精英家教网 > 高中数学 > 题目详情
若函数f(x)=|4x-x2|-a的零点个数为2,则a的范围是
{a|a=0或a>4}
{a|a=0或a>4}
分析:令g(x)=|4x-x2|=
x2-4x,x≥4或x≤0
4x-x2,0<x<4
,画出函数g(x)的图象;当x=2时,g(2)=4.当x=0或4时,g(0)=g(4)=0.即可得出a的取值范围.
解答:解:令g(x)=|4x-x2|=
x2-4x,x≥4或x≤0
4x-x2,0<x<4

画出函数g(x)的图象,
当x=2时,g(2)=4.当x=0或4时,g(0)=g(4)=0.
∴当a=0或a>4时,函数f(x)=|4x-x2|-a的零点个数为2.
故答案为:{a|a=0或a>4}.
点评:本题考查了二次函数的图象与性质、含绝对值符号的函数的图象、数形结合等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在区间[2,+∞)内至少存在一个实数c使f(c)>0,则实数P的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|4-x2|的定义域为[a,b],值域为[0,2],定义区间[a,b]的长度为b-a,则区间[a,b]长度的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=4+ax(a>0且a≠1)在[1,2]上的最大值比最小值大
a2
,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在区间[2,+∞)内至少存在一个实数c使f(c)>0,则实数P的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,f(loga x)=(x-).

(1)试证明函数y=f(x)的单调性.

(2)是否存在实数m满足:当y=f(x)的定义域为(-1,1)时,有f(1-m)+f(1-m2)<0?若存在,求出其取值范围;若不存在,请说明理由.

(3)若函数f(x)-4恰好在(-∞,2)上取负值,求a的值.

查看答案和解析>>

同步练习册答案