【题目】如图,在单位正方体中,点P在线段上运动,给出以下四个命题:
异面直线与间的距离为定值;
三棱锥的体积为定值;
异面直线与直线所成的角为定值;
二面角的大小为定值.
其中真命题有( )
A. 1个 B. 2个 C. 3个 D. 4个
科目:高中数学 来源: 题型:
【题目】从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:直线,一个圆与轴正半轴与轴正半轴都相切,且圆心到直线的距离为.
()求圆的方程.
()是直线上的动点, , 是圆的两条切线, , 分别为切点,求四边形的面积的最小值.
()圆与轴交点记作,过作一直线与圆交于, 两点, 中点为,求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在一个坡度一定的山坡AC的顶上有一高度为25m的建筑物CD,为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进50m到达B处,又测得∠DBC=45°,根据以上数据可得cosθ= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足对任意的m,n都有f(m+n)=f(m)+f(n)-1,设g(x)=f(x)+(a>0,a≠1),g(ln2018)=-2015,则g(ln)=______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,f(x)=log2(1+ax).
(1)求f(x2)的值域;
(2)若关于x的方程f(x)-log2[(a-4)x2+(2a-5)x]=0的解集恰有一个元素,求实数a的取值范围;
(3)当a>0时,对任意的t∈(,+∞),f(x2)在[t,t+1]的最大值与最小值的差不超过4,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围是 ( ).
A. B.[-1,0] C.(-∞,-2] D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com