精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)x2mlnxh(x)x2xa.

(1)a0时,f(x)h(x)(1,+∞)上恒成立,求实数m的取值范围;

(2)m2时,若函数k(x)f(x)h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.

【答案】(1) (2)

【解析】试题分析:(1) 可将问题转化为时, 恒成立问题。令,先求导,导数大于0得原函数的增区间,导数小于0得原函数的减区间,根据单调性可求最小值。只需即可。(2)可将问题转化为方程,上恰有两个相异实根,令。同(1)一样用导数求函数的单调性然后再求其极值和端点处函数值。比较极值和端点处函数值得大小,画函数草图由数形结合分析可知直线应与函数的图像有2个交点。从而可列出关于的方程。

试题解析:

解:(1)可得1

,即,记

上恒成立等价于. 3

求得

, ;

, .

处取得极小值,也是最小值,即,故.

所以,实数的取值范围为5

(2)函数上恰有两个不同的零点

等价于方程,上恰有两个相异实根. 6

,则.

时,

时,

上是单调递减函数,在上是单调递增 8

函数.故

只需

a的取值范围是10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电视台在互联网上征集电视节目的现场参与观众,报名的共有12000人,分别来自4个地区,其中甲地区2400人,乙地区4605人,丙地区3795人,丁地区1200人,主办方计划从中抽取60人参加现场节目,请设计一套抽样方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形中, 分别是上的点, 的中点现沿着翻折,使平面平面.

(Ⅰ)的中点,求证:平面.

(Ⅱ)求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,.

1)求证:存在的一次函数,使得成公比为2的等比数列;

2)求的通项公式;

3)令,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】返乡创业的大学生一直是人们比较关注的对象,他们从大学毕业,没有选择经济发达的大城市,而是回到自己的家乡,为养育自己的家乡贡献自己的力量,在享有“国际花园城市”称号的温江幸福田园,就有一个由大学毕业生创办的农家院“小时代”,其独特的装修风格和经营模式,引来无数人的关注,带来红红火火的现状,给青年大学生们就业创业上很多新的启示.在接受采访中,该老板谈起以下情况:初期投入为72万元,经营后每年的总收入为50万元,第n年需要付出房屋维护和工人工资等费用是首项为12,公差为4的等差数列(单位:万元).

1)求

2)该农家乐第几年开始盈利?能盈利几年?(即总收入减去成本及所有费用之差为正值)

3)该农家乐经营多少年,其年平均获利最大?年平均获利的最大值是多少?(年平均获利年总获利

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图椭圆的离心率为 其左顶点在圆.

1)求椭圆的方程;

2)直线与椭圆的另一个交点为,与圆的另一个交点为.是否存在直线,使得若存在,求出直线的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:

x

-4

-3

-2

-1

0

1

5

0

-3

-4

-3

m

1m=

2)在图中画出这个二次函数的图象;

3)当时,x的取值范围是

4)当时,y的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:cm):

甲:91011121020

С81413101221.

1)选择合适的统计图表表示上述数据;

2)分别计算两组数据的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区不同身高的未成年男性的体重平均值如下表.

身高/

60

70

80

90

100

110

120

130

140

150

160

170

体重/

6.13

7.90

9.99

12.15

15.02

17.50

20.92

26.86

31.11

38.85

47.25

55.05

1)根据表格提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高的函数关系?试写出这个函数模型的关系式.

2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为,体重为的在校男生的体重是否正常?

查看答案和解析>>

同步练习册答案