精英家教网 > 高中数学 > 题目详情
5.函数f(x)=lnx-|x-2|的零点的个数为2.

分析 函数f(x)=lnx-|x-2|的零点的个数,即函数y=lnx与函数y=|x-2|图象的交点个数,画出函数图象,数形结合,可得答案.

解答 解:函数f(x)=lnx-|x-2|的零点的个数,
即函数y=lnx与函数y=|x-2|图象的交点个数,
在同一坐标系中画出函数y=lnx与函数y=|x-2|图象如下图所示:

由图可得函数y=lnx与函数y=|x-2|图象有两个交点,
所以函数的零点个数为2,
故答案为:2

点评 本题考查的知识点是函数的零点,函数的图象.难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数y=sin2x+cos2x在[0,π]上的单调递减区间为[$\frac{π}{8}$,$\frac{5π}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体外接球的表面积为(  )
A.B.πC.$\frac{π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若动点P(x,y)在$\frac{x^2}{4}+\frac{y^2}{9}=1$曲线上变化,则x2+2y的最大值为(  )
A.$\frac{25}{4}$B.$\frac{27}{4}$C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$f(x)=2sinx•cos({x+\frac{π}{3}})+\frac{{\sqrt{3}}}{2}$.
(1)求$f({-\frac{π}{4}})$的值;
(2)若$x∈[{0,\frac{π}{2}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设等差数列{an}的前n项的和为Sn,且满足S2014>0,S2015<0,对任意正整数n,都有|an|≥|ak|,则k的值为1008.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$x2-(a+$\frac{1}{a}$)x+lnx,其中a>0.
(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;
(Ⅱ)当a≠1时,求函数f(x)的单调区间;
(Ⅲ)若a∈(0,$\frac{1}{2}$),证明对任意x1,x2∈[$\frac{1}{2}$,1](x1≠x2),$\frac{|f({x}_{1})-f({x}_{2})|}{{x}_{1}^{2}-{x}_{2}^{2}}$<$\frac{1}{2}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果椭圆$\frac{x^2}{81}+\frac{y^2}{25}=1$上一点M到此椭圆一个焦点F1的距离为10,N是MF1的中点,O是坐标原点,则ON的长为(  )
A.2B.4C.8D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.著名英国数学和物理学家Issac Newton(1643年-1727年)曾提出了物质在常温环境下温度变化的冷却模型.把物体放在冷空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,tmin后物体温度θ℃,可由公式θ=θ+(θ-θ)e-kt(e为自然对数的底数)得到,这里k是一个随着物体与空气的接触状况而定的正的常数.现将一个原来温度为62℃的物体放在15℃的空气中冷却,1min以后物体的温度是52℃.
(Ⅰ)求k的值(精确到0.01);
(Ⅱ)该物体从原来的62℃开始冷却多少min后温度是32℃?
(参考数据:ln$\frac{37}{47}$≈-0.24,ln$\frac{27}{47}$≈-0.55,ln$\frac{17}{47}$≈-1.02)

查看答案和解析>>

同步练习册答案