精英家教网 > 高中数学 > 题目详情
3.双曲线y2-$\frac{{x}^{2}}{7}$=1的渐近线方程为(  )
A.y=±$\sqrt{7}$xB.y=±7xC.y=±$\frac{\sqrt{7}}{7}$xD.y=±$\frac{1}{7}$x

分析 双曲线y2-$\frac{{x}^{2}}{7}$=1的渐近线方程为y2-$\frac{{x}^{2}}{7}$=0,整理后就得到双曲线的渐近线方程.

解答 解:∵双曲线y2-$\frac{{x}^{2}}{7}$=1,
∴双曲线y2-$\frac{{x}^{2}}{7}$=1的渐近线方程为y2-$\frac{{x}^{2}}{7}$=0,即y=±$\frac{\sqrt{7}}{7}$x.
故选C.

点评 本题考查双曲线的标准方程,以及双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2$\sqrt{3}$sin2x+4cos2x-3
(1)求f(x)的单调递增区间;
(2)在△ABC中,a、b、c分别为内角A、B、C所对的边,且对x∈R,f(x)的最大值为f(A),若a=2,求$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x-alnx-1(a∈R)
(1)求函数f(x)的单调区间;
(2)当x≥2时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆M的圆心在直线x+y=0上,半径为1,直线l:6x-8y-9=0被圆M截得的弦长为$\sqrt{3}$,且圆心M在直线l的右下方.
(1)求圆M的标准方程;
(2)直线mx+y-m+1=0与圆M交于A,B两点,动点P满足|PO|=$\sqrt{2}$|PM|(O为坐标原点),试求△PAB面积的最大值,并求出此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,若z=a(4x+2y)+b(a>0,b>0)的最大值为7,则$\frac{6}{a}$+$\frac{1}{b}$的最小值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分别为A,B,离心率为$\frac{\sqrt{2}}{2}$,直线x=-a与y=b交于点D,且|BD|=3$\sqrt{2}$,过点B作直线l交直线x=-a于点M,交椭圆于另一点P.
(1)求直线MB与直线PA的斜率之积;
(2)证明:$\overrightarrow{OM}$•$\overrightarrow{OP}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=(ex-1-1)(x-1),则(  )
A.当x<0,有极大值为2-$\frac{4}{e}$B.当x<0,有极小值为2-$\frac{4}{e}$
C.当x>0,有极大值为0D.当x>0,有极小值为0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)都在直线2x+y-2=0上.
(1)求数列{an}的通项公式;
(2)若bn=nan2,数列{bn}的前n项和为Tn,求证:Tn<$\frac{16}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设O为坐标原点,抛物线y2=4x的焦点为F,P为抛物线上一点.若|PF|=3,则△OPF的面积为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案