精英家教网 > 高中数学 > 题目详情
(2008•上海模拟)若一条曲线既是轴对称图形,又是中心对称图形,则称这条曲线为“二重对称曲线”,给出下列四条曲线:(1)  x2+
y2
4
=1  (2)  x2=y+1(3)  y=
3
cos(2x+
π
6
)  (4)   y=kx+b  (k,b∈R)

其中是“二重对称曲线”的有
(1),(3)
(1),(3)
分析:(1)由题意可得方程x2+
y2
4
=1
表示椭圆,由椭圆的性质可得此曲线是二重对称曲线.
(2)由x2=y+1可得y=x2-1,所以函数y=x2-1是二次函数,由二次函数的性质可得曲线x2=y+1不是二重对称曲线.
(3)函数y=
3
cos(2x+
π
6
)
的图象由余弦函数的图象平移变换而来,有余弦函数的性质可得曲线y=
3
cos(2x+
π
6
)
是二重对称曲线.
(4)由一次函数的性质可得:只有当k=0时,曲线y=kx+b(k,b∈R)才有对称轴与对称中心,所以曲线y=kx+b(k,b∈R)不是二重对称曲线.
解答:解:(1)由题意可得方程x2+
y2
4
=1
表示椭圆,由椭圆的性质可得椭圆即关于x轴,y轴对称也关于原点对称,所以曲线x2+
y2
4
=1
是二重对称曲线,所以选(1).
(2)由x2=y+1可得y=x2-1,所以函数y=x2-1是二次函数,由二次函数的性质可得其只有对称轴,所以曲线x2=y+1不是二重对称曲线,所以不选(2).
(3)函数y=
3
cos(2x+
π
6
)
的图象由余弦函数的图象平移变换而来,因为余弦函数的图象有对称轴与对称中心.所以可得曲线y=
3
cos(2x+
π
6
)
是二重对称曲线,所以选(3).
(4)由一次函数的性质可得:只有当k=0时,曲线y=kx+b(k,b∈R)才有对称轴与对称中心,所以曲线y=kx+b(k,b∈R)不是二重对称曲线,所以不选(4).
故答案为:(1)(3).
点评:本题只有考查曲线的对称性,解决此题的关键是熟练掌握常用函数的性质以及题中的新定义,此题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•上海模拟)以抛物线y2=8
3
x
的焦点F为右焦点,且两条渐近线是
3
y=0
的双曲线方程为
x2
9
-
y2
3
=1
x2
9
-
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海模拟)已知AB是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的长轴,若把该长轴n等分,过每个等分点作AB的垂线,依次交椭圆的上半部分于点P1,P2,…,Pn-1,设左焦点为F1,则
lim
n→∞
1
n
(|F1A|+|F1P1|+…+|F1Pn-1|+|F1B|)
=
a
a

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海模拟)已知向量
m
n
,其中
m
=(
1
x3+c-1
,-1)
n
=(-1,y)
(x,y,c∈R),把其中x,y所满足的关系式记为y=f(x),若函数f(x)为奇函数.
(Ⅰ) 求函数f(x)的表达式;
(Ⅱ) 已知数列{an}的各项都是正数,Sn为数列{an}的前n项和,且对于任意n∈N*,都有“{f(an)}的前n项和等于Sn2,”求数列{an}的通项式;
(Ⅲ) 若数列{bn}满足bn=4n-a•2an+1(a∈R),求数列{bn}的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海模拟)集合A={x||x|<2}的一个非空真子集是
[0,1]
[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海模拟)一机器猫每秒钟前进或后退一步,程序设计师让机器猫以前进3步,然后再后退2步的规律移动.如果将此机器猫放在数轴的原点,面向正方向,以1步的距离为1单位长移动.令P(n)表示第n秒时机器猫所在位置的坐标,且P(0)=0,则下列结论中错误的是(  )

查看答案和解析>>

同步练习册答案