精英家教网 > 高中数学 > 题目详情
11.求函数f(x)=x+$\frac{4}{{x}^{2}}$(x>1)的最小值.

分析 变形可得f(x)=x+$\frac{4}{{x}^{2}}$=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{{x}^{2}}$,由基本不等式可得.

解答 解:∵x>1,∴f(x)=x+$\frac{4}{{x}^{2}}$=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{{x}^{2}}$≥3$\root{3}{\frac{x}{2}•\frac{x}{2}•\frac{4}{{x}^{2}}}$=3,
当且仅当$\frac{x}{2}$=$\frac{4}{{x}^{2}}$即x=2时,上式取最小值3

点评 本题考查基本不等式求最值,变形是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.若函数f(x+1)=x2-2x+1,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的非零向量,$\overrightarrow{a}$与$\overrightarrow{b}$起点相同,则当t为何值时,$\overrightarrow{a}$,t$\overrightarrow{b}$,$\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow{b}$)三向量的终点在同一条直线上?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{OP}$=(1,1),$\overrightarrow{{OP}_{1}}$=(4,-4),且P2点分有向线段$\overrightarrow{P{P}_{1}}$所成的比为-2,则$\overrightarrow{{OP}_{2}}$的坐标是(  )
A.(-$\frac{5}{2}$,$\frac{3}{2}$)B.($\frac{5}{2}$,-$\frac{3}{2}$)C.(7,-9)D.(9,-7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知正实数a、b、c成等比数列,a+b+c=3,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-2n(n-1)(n∈N*
(1)求证数列{an}为等差数列,并写出通项公式.
(2)是否存在自然数n,使S1+$\frac{{S}_{2}}{2}$+$\frac{{S}_{3}}{3}$+…+$\frac{{S}_{n}}{n}$=400?若存在,求出n的值;若不存在,说明理由.
(3)是否存在非零常数p,q,使数列{$\frac{{S}_{n}}{pn+q}$}是等差数列?若存在,求出p,q应满足的关系式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若f′(x)是f(x)=$\frac{1}{x}$的导数,则y=f(x)+f′(x)的值域是$(-∞,\frac{1}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求值:(-$\frac{27}{8}$)${\;}^{-\frac{2}{3}}$+(0.002)${\;}^{-\frac{1}{2}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$-$\sqrt{3}$)0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l的纵截距为2,倾斜角的正弦值为$\frac{4}{5}$,则此直线方程为(  )
A.4x-3y-6=0B.4x-3y+6=0或4x+3y-6=0
C.4x+3y+6=0D.4x-3y-6=0或4x+3y+6=0

查看答案和解析>>

同步练习册答案