(14分)已知函数,其中常数
。
(1)当时,求函数
的单调递增区间;
(2)当时,是否存在实数
,使得直线
恰为曲线
的切线?若存在,求出
的值;若不存在,说明理由;
(3)设定义在上的函数
的图象在点
处的切线方程为
,当
时,若
在
内恒成立,则称
为函数
的“类对称点”。当
,试问
是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,说明理由.
(1)。(2)不存在;(3)
存在“类对称点”,
是一个“类对称点”的横坐标。
解析试题分析:(1),其中
,…………………. ………. ……………2
令得
或
.
……………………………
当及
时,
当
时,
……………3
的单调递增区间为
。……………………….4
(2)当时,
,其中
,
令,…………………………5
方程无解,…………………………………………………6不存在实数
使得直线
恰为曲线
的切线。………7
(3)由(2)知,当时,函数
在其图象上一点
处的切线方程为
………………..8
设则
…………………………………….9
若在
上单调递减,
时,
,此时
………………………………….
若在
上单调递减,
时,
,此时
……………………………………
在
上不存在“类对称点”………………..11
若在
上是增函数,
当时,
,当
时,
,故
即此时点是
的“类对称点”
综上,存在“类对称点”,
是一个“类对称点”的横坐标。…….14
考点:导数的几何意义;利用导数研究函数的单调性。
点评:①本题主要考查函数的单调增区间的求法,以及探索满足条件的实数的求法,探索函数是否存在“类对称点”.解题时要认真审题,注意分类讨论思想和等价转化思想的合理运用.②利用导数求函数的单调区间时一定要先求函数的定义域。
科目:高中数学 来源: 题型:解答题
已知函数,且
在
处取得极值.
(1)求的值;
(2)若当时,
恒成立,求
的取值范围;
(3)对任意的是否恒成立?如果成立,给出证明,如果不成立,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数定义域为
,且
.
设点是函数图像上的任意一点,过点
分别作直线
和
轴的垂线,垂足分别为
.
(1)写出的单调递减区间(不必证明);(4分)
(2)设点的横坐标
,求
点的坐标(用
的代数式表示);(7分)
(3)设为坐标原点,求四边形
面积的最小值.(7分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分) 已知函数f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的单调递减区间;
(2)求f(x)图象上与原点最近的对称中心的坐标;
(3)若角α,β的终边不共线,且f(α)=f(β),求tan(α+β)的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com