精英家教网 > 高中数学 > 题目详情
(1)已知cos(x+
π
6
)=
1
4
,求cos(
6
-x)+cos2(
π
3
-x)
的值;
(2)计算:sin
π
6
+cos2
π
4
cosπ+3tan2
π
6
+cos
π
3
-sin
π
2
分析:(1)利用诱导公式 求出cos(
6
-x)  和  cos (
π
3
-x)
 的值,再求得 cos2(
π
3
-x)
的值,即可得到
cos(
6
-x)+cos2(
π
3
-x)
 的值.
(2)把常用的特殊角的三角函数值代入要求的式子,运算可得结果.
解答:解:(1)∵cos(x+
π
6
)=
1
4
,∴cos(
6
-x)=cos[π-(x+
π
6
)]=-cos(x+
π
6
)=-
1
4

cos(
π
3
-x)=cos[
π
2
-(x+
π
6
)]=sin(x+
π
6
)

cos2(
π
3
-x)=sin2(x+
π
6
)=1-cos2(x+
π
6
)=1-
1
16
=
15
16

cos(
6
-x)+cos2(
π
3
-x)
=-
1
4
+
15
16
=
11
16

(2)sin
π
6
+cos2
π
4
cosπ+3tan2
π
6
+cos
π
3
-sin
π
2
=
1
2
+
1
2
×(-1)+3×
1
3
+
1
2
-1
=
1
2
点评:本题考查两角和差的余弦公式的应用,同角三角函数的基本关系,以及诱导公式的应用,角的变换是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
AC
|=5,|
AB
|=8,
AD
=
5
11
DB
CD
AD
=0

(1)求|
AB
-
AC
|

(2)设∠BAC=θ,且已知cos(θ+x)=
4
5
,-π<x<-
π
4
,求sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,|
AC
|=10
|
AD
|=5
AD
=
5
11
DB
CD
AB
=0

(1)求|
AB
-
AC
|

(2)设∠BAC=θ,且已知cos(θ+x)=
4
5
-
π
2
<x<0
,求sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知实数x,y满足
2x+1
+
2y+3
=4
,则x+y的最小值为多少.
(2)在极坐标系中(ρ,θ)(0<θ≤2π),曲线ρ(cosθ+sinθ)=2与ρ(sinθ-cosθ)=2的交点的极坐标为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知cos(x+
π
6
)=
1
4
,求cos(
6
-x)+cos2(
π
3
-x)
的值;
(2)计算:sin
π
6
+cos2
π
4
cosπ+3tan2
π
6
+cos
π
3
-sin
π
2

查看答案和解析>>

同步练习册答案