精英家教网 > 高中数学 > 题目详情
17.设数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a3+1,a4成等差数列,令bn=log2an
(1)求数列{an}的通项公式;
(2)令${c_n}=\frac{b_n}{a_n}$,求数列{cn}的前n项和Tn

分析 (1)通过Sn=2an-a1与Sn-1=2an-1-a1(n≥2)作差可知an=2an-1(n≥2),利用a1,a3+1,a4成等差数列可知a1=2,从而数列{an}是首项为2,公比为2的等比数列,进而计算可得结论;
(2)通过(1)可知${c_n}=\frac{n}{a_n}=\frac{n}{2^n}$,进而利用错位相减法计算即得结论.

解答 解:(1)由题意,可知Sn=2an-a1
从而Sn-1=2an-1-a1(n≥2),
上述两式相减,可得Sn-Sn-1=2an-2an-1
即an=2an-2an-1
所以an=2an-1(n≥2),
从而a2=2a1,a3=2a2=4a1,a4=2a3=8a1
又因为a1,a3+1,a4成等差数列,
所以a1+a4=2(a3+1),即a1+8a1=2(4a1+1),
解之得a1=2,
又an=2an-1(n≥2),
所以数列{an}是首项为2,公比为2的等比数列,
故数列{an}的通项公式为${a_n}=2×{2^{n-1}}={2^n}$…(6分)
(2)由(1),可知${c_n}=\frac{n}{a_n}=\frac{n}{2^n}$,
所以${T_n}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n-1}{{{2^{n-1}}}}+\frac{n}{2^n}$,①
以上等式两边同乘以$\frac{1}{2}$,可得$\frac{1}{2}{T_n}=\frac{1}{2^2}+\frac{2}{2^3}+…+\frac{n-1}{2^n}+\frac{n}{{{2^{n+1}}}}$,②
由①-②,可得得$\frac{1}{2}{T_n}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+…+\frac{1}{2^n}-\frac{n}{{{2^{n+1}}}}$
=$\frac{{\frac{1}{2}[1-{{(\frac{1}{2})}^n}]}}{{1-\frac{1}{2}}}-\frac{n}{{{2^{n+1}}}}=1-{(\frac{1}{2})^n}-\frac{n}{{{2^{n+1}}}}$
=$1-\frac{1}{2^n}-\frac{n}{{{2^{n+1}}}}=1-\frac{n+2}{{{2^{n+1}}}}$,
所以${T_n}=2-\frac{n+2}{2^n}$…(14分)

点评 本题考查数列的通项及前n项和,考查错位相减法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设f(x)=loga(1+x)+loga(3-x)(a>0且a≠1),已知f(1)=2.
(1)求a的值及f(x)的定义域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC中,$|\overrightarrow{BC}|=6$,$\overrightarrow{AB}•\overrightarrow{AC}=16$,D为边BC的中点,则$|\overrightarrow{AD}|$=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,则$\overrightarrow{PA}•\overrightarrow{PB}$=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在棱长为2的正方体ABCD-A1B1C1D1中,过AC且与直线D1B平行的截面交D1D于点M,则△MAC的面积为=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.己知命题p:方程$\frac{{x}^{2}}{4-k}$+$\frac{{y}^{2}}{k-1}$=1表示双曲线;q:不等式x2-(k+1)x+k+1>0对一切x>1的实数恒成立.若“p∨q”为真,“p∧q”为假,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某中学根据2002-2014年期间学生的兴趣爱好,分别创建了“摄影”、“棋类”、“国学”三个社团,据资料统计新生通过考核远拔进入这三个社团成功与否相互独立,2015年某新生入学,假设他通过考核选拔进入该校的“摄影”、“棋类”、“国学”三个社团的概率依次为m,$\frac{1}{3}$,n,已知三个社团他都能进入的概率为$\frac{1}{24}$,至少进入一个社团的概率为$\frac{3}{4}$,且m>n.
(1)求m与n的值;
(2)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修字分1分,对进入“棋类”社的同学增加校本选修学分2分,对进入“国学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课字分分数的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=1,Sn为数列{an}的前n项和,n∈N*
(1)若an+1-an=pn(p≠0),且a1,2a2,3a3成等差数列,求p的值及an
(2)若Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N*),求S100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sinα-cosα=$\frac{1}{5}$,且0<α<π,则tanα=$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案