已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率,过椭圆的右焦点作与坐标轴不垂直的直线交椭圆于两点.
(1)求椭圆方程;
(2)设点是线段上的一个动点,且,求的取值范围;
(3)设点是点关于轴对称点,在轴上是否存在一个定点,使得三点共线?若存在,求出定点的坐标,若不存在,请说明理由.
科目:高中数学 来源:2013-2014学年上海市高三八校联合调研考试理科数学试卷(解析版) 题型:填空题
已知椭圆的焦点在轴上,一个顶点为,其右焦点到直线的距离为,则椭圆的方程为 .
查看答案和解析>>
科目:高中数学 来源:2012-2013学年黑龙江省齐齐哈尔市高三二模文科数学试卷(解析版) 题型:解答题
已知椭圆的焦点在轴上,离心率,且经过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)斜率为的直线与椭圆相交于两点,求证:直线与的倾斜角互补.
查看答案和解析>>
科目:高中数学 来源:2011年福建师大附中高二第一学期期末数学理卷 题型:解答题
(本小题13分)
已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率,过椭圆的右焦点作不与坐标轴垂直的直线,交椭圆于A、B两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(m,0)是线段OF上的一个动点,且,求取值范围;
(Ⅲ)设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C、B、N 三点共线?若存在,求出定点N的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:黑龙江省2009-2010学年度上学期高三期末(数学理)试题 题型:解答题
已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率,过椭圆的右焦点作与坐标轴不垂直的直线交椭圆于两点.
(1)求椭圆方程;
(2)设点是线段上的一个动点,且,求的取值范围;
(3)设点是点关于轴对称点,在轴上是否存在一个定点,使得三点共线?若存在,求出定点的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com